-
1
-
-
51949090223
-
Defense of nearest-neighbor based image classification
-
O. Boiman, E. Shechtman, and M. Irani. In defense of Nearest-Neighbor based image classification. In Proc. CVPR, 2008.
-
(2008)
Proc. CVPR
-
-
Boiman, O.1
Shechtman, E.2
Irani, M.3
-
4
-
-
79952454090
-
-
Technical Report SAND2010-1422, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, Mar.
-
D. M. Dunlavy, T. G. Kolda, and E. Acar. Poblano v1. 0: A matlab toolbox for gradient-based optimization. Technical Report SAND2010-1422, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, Mar. 2010.
-
(2010)
Poblano v1. 0: A Matlab Toolbox for Gradient-based Optimization
-
-
Dunlavy, D.M.1
Kolda, T.G.2
Acar, E.3
-
5
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
6
-
-
0026120634
-
Letter recognition using hollandstyle adaptive classifiers
-
P. W. Frey and D. J. Slate. Letter recognition using hollandstyle adaptive classifiers. Machine Learning, 6(2):161-182, 1991.
-
(1991)
Machine Learning
, vol.6
, Issue.2
, pp. 161-182
-
-
Frey, P.W.1
Slate, D.J.2
-
7
-
-
0028428774
-
A database for handwritten text recognition research
-
May
-
J. Hull. A database for handwritten text recognition research. IEEE Trans. on PAMI, 16(5):550-554, May 1994.
-
(1994)
IEEE Trans. on PAMI
, vol.16
, Issue.5
, pp. 550-554
-
-
Hull, J.1
-
9
-
-
80053436893
-
Locally linear support vector machines
-
L. Ladicky and P. H. S. Torr. Locally linear support vector machines. In Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Ladicky, L.1
Torr, P.H.S.2
-
10
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Nov
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
11
-
-
51949098112
-
Classification using intersection kernel support vector machines is efficient
-
S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In Proc. CVPR, 2008.
-
(2008)
Proc. CVPR
-
-
Maji, S.1
Berg, A.C.2
Malik, J.3
-
12
-
-
79951945041
-
Local distance functions: A taxonomy, new algorithms, and an evaluation
-
D. Ramanan and S. Baker. Local distance functions: A taxonomy, new algorithms, and an evaluation. IEEE Trans. on PAMI, 33:794-806, 2011.
-
(2011)
IEEE Trans. on PAMI
, vol.33
, pp. 794-806
-
-
Ramanan, D.1
Baker, S.2
-
15
-
-
80052878786
-
Real-time human pose recognition parts from single depth images
-
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In Proc. CVPR, 2011.
-
(2011)
Proc. CVPR
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
16
-
-
84856194352
-
Efficient additive kernels via explicit feature maps
-
A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. IEEE Trans. on PAMI, 34(3), 2011.
-
(2011)
IEEE Trans. on PAMI
, vol.34
, Issue.3
-
-
Vedaldi, A.1
Zisserman, A.2
-
17
-
-
61749090884
-
Distance metric learning for large margin nearest neighbor classification
-
K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. JMLR, 10:207-244, 2009.
-
(2009)
JMLR
, vol.10
, pp. 207-244
-
-
Weinberger, K.1
Saul, L.2
-
18
-
-
84866660546
-
Efficient discriminative learning of parametric nearest neighbor classifiers
-
Z. Zhang, P. Sturgess, S. Sengupta, N. Crook, and P. H. S. Torr. Efficient discriminative learning of parametric nearest neighbor classifiers. In Proc. CVPR, 2012.
-
(2012)
Proc. CVPR
-
-
Zhang, Z.1
Sturgess, P.2
Sengupta, S.3
Crook, N.4
Torr, P.H.S.5
-
19
-
-
84898436991
-
Do we need more training data or better models for object detection?
-
X. Zhu, C. Vondrick, D. Ramanan, and C. C. Fowlkes. Do we need more training data or better models for object detection? In Proc. BMVC, 2012.
-
(2012)
Proc. BMVC
-
-
Zhu, X.1
Vondrick, C.2
Ramanan, D.3
Fowlkes, C.C.4
|