메뉴 건너뛰기




Volumn 13, Issue 11, 2013, Pages 15172-15186

Multi-matrices factorization with application to missing sensor data imputation

Author keywords

Matrix factorization; Missing estimation; Probabilistic graphical model; Sensor data

Indexed keywords

ESTIMATION PROBLEM; FACTORIZATION MODEL; MATRIX COMPLETION; MATRIX FACTORIZATIONS; PROBABILISTIC GRAPHICAL MODELS; SENSOR DATA; SOLUTION ALGORITHMS; TEMPORAL FEATURES;

EID: 84887336979     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s131115172     Document Type: Article
Times cited : (15)

References (37)
  • 1
    • 61849150502 scopus 로고    scopus 로고
    • K nearest neighbours with mutual information for simultaneous classification and missing data imputation
    • García-Laencina, P.J.; Sancho-Gómez, J.L.; Figueiras-Vidal, A.R.; Verleysen, M. K nearest neighbours with mutual information for simultaneous classification and missing data imputation. Neurocomputation 2009, 72, 1483-1493.
    • (2009) Neurocomputation , vol.72 , pp. 1483-1493
    • García-Laencina, P.J.1    Sancho-Gómez, J.L.2    Figueiras-Vidal, A.R.3    Verleysen, M.4
  • 2
    • 28944453700 scopus 로고    scopus 로고
    • Multiple imputation scheme for overcoming the missing values and variability issues in ITS data
    • Ni, D.; Leonard, J.D.; Guin, A.; Feng, C. Multiple imputation scheme for overcoming the missing values and variability issues in ITS data. J. Transport. Eng. 2005, 131, 931-938.
    • (2005) J. Transport. Eng. , vol.131 , pp. 931-938
    • Ni, D.1    Leonard, J.D.2    Guin, A.3    Feng, C.4
  • 4
    • 57749178570 scopus 로고    scopus 로고
    • A BPCA Based Missing Value Imputing Method for Traffic Flow Volume Data
    • In, Eindhoven, The Neatherlands, 4-6 June
    • Qu, L.; Zhang, Y.; Hu, J.; Jia, L.; Li, L. A BPCA Based Missing Value Imputing Method for Traffic Flow Volume Data. In Proceedings of 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Neatherlands, 4-6 June 2008; pp. 985-990.
    • (2008) Proceedings of 2008 IEEE Intelligent Vehicles Symposium , pp. 985-990
    • Qu, L.1    Zhang, Y.2    Hu, J.3    Jia, L.4    Li, L.5
  • 6
    • 84872255037 scopus 로고    scopus 로고
    • Avaiable online:, (accessed on 1 July 2013)
    • Netflix Prize. Avaiable online: http://www.netflixprize.com (accessed on 1 July 2013).
    • Netflix Prize
  • 9
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Seung, D.; Lee, L. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001, 13, 556-562.
    • (2001) Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Seung, D.1    Lee, L.2
  • 10
    • 26944457949 scopus 로고    scopus 로고
    • Ph. D Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
    • Srebro, N. Learning with Matrix Factorizations. Ph. D Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2004.
    • (2004) Learning with Matrix Factorizations
    • Srebro, N.1
  • 12
    • 84887382015 scopus 로고    scopus 로고
    • Avaiable online:, (accessed on 1 July 2013)
    • Independent and identically distributed random variables. Avaiable online: http://en.wikipedia.org/ wiki/ndependent and identically distributed random variables (accessed on 1 July 2013).
    • Independent and identically distributed random variables
  • 13
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for rcommender systems
    • Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for rcommender systems. Computer 2009, 42, 30-37.
    • (2009) Computer , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 16
  • 17
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717-772.
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 18
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457-1469.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 19
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 2010, 11, 19-60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 25
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • Candès, E.J.; Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 2010, 56, 2053-2080.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , pp. 2053-2080
    • Candès, E.J.1    Tao, T.2
  • 27
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequencyinformation
    • Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequencyinformation. IEEE Trans. Inf. Theory 2006, 52, 489-509.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 31
    • 70349166727 scopus 로고    scopus 로고
    • PPCA-based missing data imputation for traffic flow volume: A systematical approach
    • Qu, L.; Hu, J.; Li, L.; Zhang, Y. PPCA-based missing data imputation for traffic flow volume: A systematical approach. IEEE Trans. Intell. Transport. Syst. 2009, 10, 512-522.
    • (2009) IEEE Trans. Intell. Transport. Syst. , vol.10 , pp. 512-522
    • Qu, L.1    Hu, J.2    Li, L.3    Zhang, Y.4
  • 36
    • 84887335991 scopus 로고    scopus 로고
    • Avaiable online:, (accessed on 1 July 2013)
    • Zhuhai. Avaiable online: http://en.wikipedia.org/wiki/Zhuhai (accessed on 1 July 2013).
    • Zhuhai
  • 37
    • 84887389412 scopus 로고    scopus 로고
    • Avaiable online:, (accessed on 1 July 2013)
    • Floating Car Data. Avaiable online: http://en.wikipedia.org/wiki/Floating car data (accessed on 1 July 2013).
    • Floating Car Data


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.