메뉴 건너뛰기




Volumn 28, Issue 9, 2013, Pages 137-144

A hybrid model for wind power forecasting based on ensemble empirical mode decomposition and wavelet neural networks

Author keywords

Ensemble empirical mode decomposition(EEMD); Forecasting; Hybrid model; Wavelet neural networks(WNN); Wind power

Indexed keywords

ENGINEERING APPLICATIONS; ENSEMBLE EMPIRICAL MODE DECOMPOSITION; ENSEMBLE EMPIRICAL MODE DECOMPOSITIONS (EEMD); HYBRID MODEL; POWER SIGNALS; PREDICTION ACCURACY; WAVELET NEURAL NETWORKS; WIND POWER FORECASTING;

EID: 84887222928     PISSN: 10006753     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (18)
  • 1
    • 77957605946 scopus 로고    scopus 로고
    • Problems and measures of power grid accommodating large scale wind power
    • Zhang Liying, Ye Tinglu, Xin Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
    • (2010) Proceedings of the CSEE , vol.30 , Issue.25 , pp. 1-9
    • Zhang, L.1    Ye, T.2    Xin, Y.3
  • 2
    • 77951665319 scopus 로고    scopus 로고
    • ARIMA-based time series model of stochastic wind power generation
    • Pei Y C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.2 , pp. 667-676
    • Pei, Y.C.1    Pedersen, T.2    Bak, J.B.3
  • 3
    • 60449093916 scopus 로고    scopus 로고
    • Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series
    • Dong Lei, Wang Lijie, Gao Shuang. Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 125-129.
    • (2008) Transactions of China Electrotechnical Society , vol.23 , Issue.12 , pp. 125-129
    • Dong, L.1    Wang, L.2    Gao, S.3
  • 4
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Rajesh G K, Krithika S. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Rajesh, G.K.1    Krithika, S.2
  • 5
    • 77951665319 scopus 로고    scopus 로고
    • ARIMA-based time series model of stochastic wind power generation
    • Peiyuan C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.2 , pp. 667-676
    • Peiyuan, C.1    Pedersen, T.2    Bak, J.B.3
  • 6
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model[J]. Renewable Energy, 2010, 35(7): 2732-2738.
    • (2010) Renewable Energy , vol.35 , Issue.7 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 7
    • 84863176176 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on support vector machine with similar data
    • Yang Xiyun, Sun Baojun, Zhang Xinfang, et al. Short-term wind speed forecasting based on support vector machine with similar data[J]. Proceedings of the CSEE, 2012, 32(4): 35-41.
    • (2012) Proceedings of the CSEE , vol.32 , Issue.4 , pp. 35-41
    • Yang, X.1    Sun, B.2    Zhang, X.3
  • 8
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 9
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and-non-stationary time series analysis
    • Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and-non-stationary time series analysis [J]. Proceedings of the Royal Society Soc Land, 1998, 454(1971): 903-995.
    • (1998) Proceedings of the Royal Society Soc Land , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 10
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    • (2009) Advances in Adaptive Data Analysis , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 11
    • 84869854408 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on Gaussian process regression model
    • Sun Bin, Yao Haitao, Liu Ting. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109.
    • (2012) Proceedings of the CSEE , vol.32 , Issue.29 , pp. 104-109
    • Sun, B.1    Yao, H.2    Liu, T.3
  • 12
    • 0040315167 scopus 로고    scopus 로고
    • Nonlinear dynamics, delay times and embedding windows
    • Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows[J]. Physica D, 1999, 127: 48-60.
    • (1999) Physica D , vol.127 , pp. 48-60
    • Kim, H.S.1    Eykholt, R.2    Salas, J.D.3
  • 13
    • 74849129081 scopus 로고    scopus 로고
    • Short-term price forecasting based on chaotic property and phase space recostructed neural networks
    • Luo Xin, Zhou Yuhui, Guo Hongyu. Short-term price forecasting based on chaotic property and phase space recostructed neural networks[J]. Relay, 2008, 36(1): 48-52.
    • (2008) Relay , vol.36 , Issue.1 , pp. 48-52
    • Luo, X.1    Zhou, Y.2    Guo, H.3
  • 14
    • 76649105074 scopus 로고    scopus 로고
    • Short-term load Forecasting: Similar day-based wavelet neural networks
    • Chen Y, Peter B L, Guan C, et al. Short-term load Forecasting: similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.1 , pp. 322-330
    • Chen, Y.1    Peter, B.L.2    Guan, C.3
  • 15
    • 84872956786 scopus 로고    scopus 로고
    • Very short-term load forecasting: Wavelet neural networks with Data Pre-Filtering
    • Guan C, Peter B L, Michel L D, et al. Very short-term load forecasting: wavelet neural networks with Data Pre-Filtering[J]. IEEE Transactions on Power Systems, 2013, 28(1): 30-41.
    • (2013) IEEE Transactions on Power Systems , vol.28 , Issue.1 , pp. 30-41
    • Guan, C.1    Peter, B.L.2    Michel, L.D.3
  • 16
    • 1442352110 scopus 로고    scopus 로고
    • A simulation study on load modeing of a thermal power unit based on wavelet neural networks
    • Hou Yiwen, Shen Jiong, Li Yiguo. A simulation study on load modeing of a thermal power unit based on wavelet neural networks[J]. Proceedings of the CSEE, 2003, 23(10): 220-224.
    • (2003) Proceedings of the CSEE , vol.23 , Issue.10 , pp. 220-224
    • Hou, Y.1    Shen, J.2    Li, Y.3
  • 17
    • 70350584960 scopus 로고    scopus 로고
    • Short-term power prediction of a wind farm based on wavelet analysis
    • Wang Lijie, Dong Lei, Liao Xiaozhong, et al, Short-term power prediction of a wind farm based on wavelet analysis[J]. Proceedings of the CSEE, 2009, 29(28): 30-33.
    • (2009) Proceedings of the CSEE , vol.29 , Issue.28 , pp. 30-33
    • Wang, L.1    Dong, L.2    Liao, X.3
  • 18
    • 77349125855 scopus 로고    scopus 로고
    • Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization
    • Zhang Chunxiao, Zhang Tao. Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization[J]. Proceedings of the CSEE, 2010, 30(2): 86-91.
    • (2010) Proceedings of the CSEE , vol.30 , Issue.2 , pp. 86-91
    • Zhang, C.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.