메뉴 건너뛰기




Volumn 32, Issue 29, 2012, Pages 104-109

Short-term wind speed forecasting based on Gaussian process regression model

Author keywords

Forecasting; Gaussian process; Phase space reconstruction; Wind speed time series

Indexed keywords

ELECTRIC POWER GENERATION; ELECTRIC POWER TRANSMISSION NETWORKS; ELECTRIC UTILITIES; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); NEURAL NETWORKS; PHASE SPACE METHODS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES; TIME SERIES; WIND EFFECTS; WIND POWER;

EID: 84869854408     PISSN: 02588013     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (61)

References (24)
  • 1
    • 84865055020 scopus 로고    scopus 로고
    • China wind power integration status quo and its benifit to energy saving and emission reduction
    • Chinese source
    • Zhu Keding, Song Yihang, Tan Zhongfu, et al. China wind power integration status quo and its benifit to energy saving and emission reduction[J]. Electric Power, 2011, 6(44): 67-70(in Chinese).
    • (2011) Electric Power , vol.6 , Issue.44 , pp. 67-70
    • Zhu, K.1    Song, Y.2    Tan, Z.3
  • 2
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • Fan Shu, Liao J R, Yokoyama R, et al. Forecasting the wind generation using a two-stage network based on meteorological information[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 474-482.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , Issue.2 , pp. 474-482
    • Fan, S.1    Liao, J.R.2    Yokoyama, R.3
  • 4
    • 31744451232 scopus 로고    scopus 로고
    • Short-term prediction of wind energy production
    • Sanchez I. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006, 22(1): 43-56.
    • (2006) International Journal of Forecasting , vol.22 , Issue.1 , pp. 43-56
    • Sanchez, I.1
  • 5
    • 43049128559 scopus 로고    scopus 로고
    • A review on the young history of the wind power short-term prediction
    • Alexandre C, Antonio C, Jorge N, et al. A review on the young history of the wind power short-term prediction[J]. Renewable and Sustainable Energy Reviews, 2008, 12(4): 1725-1744.
    • (2008) Renewable and Sustainable Energy Reviews , vol.12 , Issue.4 , pp. 1725-1744
    • Alexandre, C.1    Antonio, C.2    Jorge, N.3
  • 6
    • 40949159664 scopus 로고    scopus 로고
    • The economic benefit of short-term forecasting for wind energy in the UK electricity market
    • Barthelmie R J, Murray F, Pryor S C. The economic benefit of short-term forecasting for wind energy in the UK electricity market[J]. Energy Policy, 2008, 36(5): 1687-1696.
    • (2008) Energy Policy , vol.36 , Issue.5 , pp. 1687-1696
    • Barthelmie, R.J.1    Murray, F.2    Pryor, S.C.3
  • 7
    • 79953650791 scopus 로고    scopus 로고
    • Wind speed forecasting with artificial neural networks model
    • Chinese source
    • Huang Xiaohua, Li Deyuan, Lü Wenge, et al. Wind speed forecasting with artificial neural networks model[J]. Acta Energiae Solaris Sinica, 2011, 32(2): 193-197(in Chinese).
    • (2011) Acta Energiae Solaris Sinica , vol.32 , Issue.2 , pp. 193-197
    • Huang, X.1    Li, D.2    Lü, W.3
  • 8
    • 84863998159 scopus 로고    scopus 로고
    • Problems and the solution of wind power development in China
    • Chinese source
    • Wei Xiaoxia. Problems and the solution of wind power development in China[J]. Electric Power Technology Economics, 2009, 21(6): 23-26(in Chinese).
    • (2009) Electric Power Technology Economics , vol.21 , Issue.6 , pp. 23-26
    • Wei, X.1
  • 9
    • 0032122184 scopus 로고    scopus 로고
    • Short term forecasting of wind speed and related electrical power
    • Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
    • (1998) Solar Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.1    Dokopoulos, P.2    Sahsamanoglou, H.3
  • 10
    • 0021866117 scopus 로고
    • Short-term wind speed using Kalman filters
    • Bossanyi E A. Short-term wind speed using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-7.
    • (1985) Wind Engineering , vol.9 , Issue.1 , pp. 1-7
    • Bossanyi, E.A.1
  • 11
    • 21844477547 scopus 로고    scopus 로고
    • Wind speed and generated power forecasting in wind farm
    • Chinese source
    • Yang Xiuyuan, Xiao Yang, Chen Shuyong. Wind speed and generated power forecasting in wind farm [J]. Proceedings of the CSEE, 2005, 25(11): 1-5(in Chinese).
    • (2005) Proceedings of the CSEE , vol.25 , Issue.11 , pp. 1-5
    • Yang, X.1    Xiao, Y.2    Chen, S.3
  • 12
    • 57949114095 scopus 로고    scopus 로고
    • A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm
    • Chinese source
    • Pan Difu, Liu Hui, Li Yanfei. A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J]. Power System Technology, 2008, 32(7): 82-86(in Chinese).
    • (2008) Power System Technology , vol.32 , Issue.7 , pp. 82-86
    • Pan, D.1    Liu, H.2    Li, Y.3
  • 13
    • 0032122184 scopus 로고    scopus 로고
    • Short term forecasting of wind speed and related electrical power
    • Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
    • (1998) Solar Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.C.1    Dokopoulos, P.S.2    Sahsamanoglou, H.S.3
  • 14
    • 44849099825 scopus 로고    scopus 로고
    • A vector autoregression model of hourly wind speed and its applications in hourly wind speed forecasting
    • Chinese source
    • Sun Chunshun, Wang Yaonan, Li Xinran. A vector autoregression model of hourly wind speed and its applications in hourly wind speed forecasting [J]. Proceedings of the CSEE, 2008, 28(14): 112-117(in Chinese).
    • (2008) Proceedings of the CSEE , vol.28 , Issue.14 , pp. 112-117
    • Sun, C.1    Wang, Y.2    Li, X.3
  • 15
    • 53649090652 scopus 로고    scopus 로고
    • Optimization algorithm of short-term multi-step wind speed forecast
    • Chinese source
    • Pan Difu, Liu Hui, Li Yanfei. Optimization algorithm of short-term multi-step wind speed forecast[J]. Proceedings of the CSEE, 2008, 28(26): 87-91(in Chinese).
    • (2008) Proceedings of the CSEE , vol.28 , Issue.26 , pp. 87-91
    • Pan, D.1    Liu, H.2    Li, Y.3
  • 16
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA model
    • Kavasseri R G, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(3): 1388-1393.
    • (2009) Renewable Energy , vol.34 , Issue.3 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 17
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 18
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model[J]. 2010, 35(7): 2732-2738.
    • (2010) , vol.35 , Issue.7 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 19
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • Gong L, Shi Jing, Zhou Junyi. Bayesian adaptive combination of short-term wind speed forecasts from neural network models[J]. Renewable Energy, 2011, 36(7): 352-359.
    • (2011) Renewable Energy , vol.36 , Issue.7 , pp. 352-359
    • Gong, L.1    Shi, J.2    Zhou, J.3
  • 20
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural System, 2004, 14(2): 69-106.
    • (2004) International Journal of Neural System , vol.14 , Issue.2 , pp. 69-106
    • Seeger, M.1
  • 23
    • 70350594495 scopus 로고    scopus 로고
    • Short-term wind speed forecasting of wind farm based on least square-support vector machine
    • Chinese source
    • Du Ying, Lu Jiping, Li Qing, et al. Short-term wind speed forecasting of wind farm based on least square-support vector machine[J]. Power System Technology, 2008, 32(15): 62-66(in Chinese).
    • (2008) Power System Technology , vol.32 , Issue.15 , pp. 62-66
    • Du, Y.1    Lu, J.2    Li, Q.3
  • 24
    • 77957950260 scopus 로고    scopus 로고
    • Wind speed forecasting model study based on support vector machine
    • Chinese source
    • Zhang Hua, Zeng Jie. Wind speed forecasting model study based on support vector machine[J]. Acta Energiae Solaris Sinica, 2010, 7(31): 928-932(in Chinese).
    • (2010) Acta Energiae Solaris Sinica , vol.7 , Issue.31 , pp. 928-932
    • Zhang, H.1    Zeng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.