메뉴 건너뛰기




Volumn 67, Issue , 2014, Pages 156-163

Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS

Author keywords

ANFIS; ANN; Compressive strength; Concrete; Genetic algorithms; Hybrid method

Indexed keywords

BACKPROPAGATION ALGORITHMS; COMPRESSIVE STRENGTH; CONCRETES; FORECASTING; GENETIC ALGORITHMS; MODELS; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 84887072711     PISSN: 09659978     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.advengsoft.2013.09.004     Document Type: Article
Times cited : (166)

References (25)
  • 1
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high-performance concrete using artificial neural networks
    • PII S0008884698001653
    • I-C. Yeh Modeling of strength of high-performance concrete using artificial neural networks Cem Concr Res 28 1998 1797 1808 (Pubitemid 128638428)
    • (1998) Cement and Concrete Research , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.-C.1
  • 2
    • 22844449521 scopus 로고    scopus 로고
    • A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic
    • DOI 10.1016/j.cemconres.2005.01.001, PII S0008884605000086
    • F. Demir A new way of prediction elastic modulus of normal and high strength concrete - fuzzy logic Cem Concr Res 35 2005 1531 1538 (Pubitemid 41037198)
    • (2005) Cement and Concrete Research , vol.35 , Issue.8 , pp. 1531-1538
    • Demir, F.1
  • 3
    • 1542790539 scopus 로고    scopus 로고
    • Genetic algorithm in mix proportioning of high-performance concrete
    • C.-H. Lim, Y.-S. Yoon, and J.-H. Kim Genetic algorithm in mix proportioning of high-performance concrete Cem Concr Res 34 2004 409 420
    • (2004) Cem Concr Res , vol.34 , pp. 409-420
    • Lim, C.-H.1    Yoon, Y.-S.2    Kim, J.-H.3
  • 4
    • 3142763999 scopus 로고    scopus 로고
    • Fuzzy logic model for the prediction of cement compressive strength
    • S. Akkurt, G. Tayfur, and S. Can Fuzzy logic model for the prediction of cement compressive strength Cem Concr Res 34 2004 1429 1433
    • (2004) Cem Concr Res , vol.34 , pp. 1429-1433
    • Akkurt, S.1    Tayfur, G.2    Can, S.3
  • 5
    • 34347257478 scopus 로고    scopus 로고
    • Adaptive network-fuzzy inferencing to estimate concrete strength using mix design
    • DOI 10.1061/(ASCE)0899-1561(2007)19:7(550)
    • S. Tesfamariam, and H. Najjaran Adaptive network-fuzzy inferencing to estimate concrete strength using mix design J Mater Civil Eng 19 2007 550 560 (Pubitemid 46995186)
    • (2007) Journal of Materials in Civil Engineering , vol.19 , Issue.7 , pp. 550-560
    • Tesfamariam, S.1    Najjaran, H.2
  • 6
    • 79951816268 scopus 로고    scopus 로고
    • A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches
    • M. Bilgehan A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches Nondestruct Test Eva 26 2011 35 55
    • (2011) Nondestruct Test Eva , vol.26 , pp. 35-55
    • Bilgehan, M.1
  • 7
    • 67650674559 scopus 로고    scopus 로고
    • Genetic algorithm based backpropagation neural network performs better than backpropagation neural network in stock rates prediction
    • A.U. Khan, T. Bandopadhyaya, and S. Sharma Genetic algorithm based backpropagation neural network performs better than backpropagation neural network in stock rates prediction J Comput Sci Network Secur 8 2008 162 166
    • (2008) J Comput Sci Network Secur , vol.8 , pp. 162-166
    • Khan, A.U.1    Bandopadhyaya, T.2    Sharma, S.3
  • 9
    • 84877742103 scopus 로고    scopus 로고
    • A new approach for function optimization using hybrid GA-ANN algorithm
    • N. Gupta, G.S. Gaba, and H.S. Gill A new approach for function optimization using hybrid GA-ANN algorithm Int J Eng Res Appl 2 2012 386 389
    • (2012) Int J Eng Res Appl , vol.2 , pp. 386-389
    • Gupta, N.1    Gaba, G.S.2    Gill, H.S.3
  • 10
    • 84880916803 scopus 로고    scopus 로고
    • Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization
    • Chen D, Zhao W, Sprott JC, Ma X. Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dynam 2013: 1-11.
    • (2013) Nonlinear Dynam , pp. 1-11
    • Chen, D.1    Zhao, W.2    Sprott, J.C.3    Ma, X.4
  • 11
    • 69549084456 scopus 로고    scopus 로고
    • Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal
    • Z. Fu, J. Mo, L. Chen, and W. Chen Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal Mater Des 31 2010 267 277
    • (2010) Mater des , vol.31 , pp. 267-277
    • Fu, Z.1    Mo, J.2    Chen, L.3    Chen, W.4
  • 13
    • 79954570730 scopus 로고    scopus 로고
    • Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis
    • H. Lin, J. Zhao, L. Sun, Q. Chen, and F. Zhou Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis Innov Food Sci Emerg 12 2011 182 186
    • (2011) Innov Food Sci Emerg , vol.12 , pp. 182-186
    • Lin, H.1    Zhao, J.2    Sun, L.3    Chen, Q.4    Zhou, F.5
  • 14
    • 84929167407 scopus 로고    scopus 로고
    • Development of genetic algorithm based hybrid network model for predicting the ultimate flexural strength of ferrocement elements
    • Sudarsana RH, Subba RP, Vaishali GG. Development of genetic algorithm based hybrid network model for predicting the ultimate flexural strength of ferrocement elements. Int J Eng Sci 2012.
    • (2012) Int J Eng Sci
    • Sudarsana, R.H.1    Subba, R.P.2    Vaishali, G.G.3
  • 15
  • 16
    • 84873178525 scopus 로고    scopus 로고
    • Weighted cellular automata design for test pattern generator based on genetic algorithm
    • E.M. Tan, Q.Q. Li, and J.G. Jiang Weighted cellular automata design for test pattern generator based on genetic algorithm Appl Mech Mater 273 2013 840 844
    • (2013) Appl Mech Mater , vol.273 , pp. 840-844
    • Tan, E.M.1    Li, Q.Q.2    Jiang, J.G.3
  • 19
    • 84870387946 scopus 로고    scopus 로고
    • Cascading artificial neural networks optimized by genetic algorithms and integrated with global navigation satellite system to offer accurate ubiquitous positioning in urban environment
    • H. Mehmood, and N.K. Tripathi Cascading artificial neural networks optimized by genetic algorithms and integrated with global navigation satellite system to offer accurate ubiquitous positioning in urban environment Comput Environ Urban Syst 37 2013 35 44
    • (2013) Comput Environ Urban Syst , vol.37 , pp. 35-44
    • Mehmood, H.1    Tripathi, N.K.2
  • 20
    • 77951904824 scopus 로고    scopus 로고
    • A genetic algorithm approach for the capacitated single allocation p-hub median problem
    • Z. Stanimirović A genetic algorithm approach for the capacitated single allocation p-hub median problem Comput Inform 29 2012 117 132
    • (2012) Comput Inform , vol.29 , pp. 117-132
    • Stanimirović, Z.1
  • 21
    • 84887062629 scopus 로고    scopus 로고
    • strength DATA sets come from UCI
    • < http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+ > strength DATA sets come from UCI.
  • 22
    • 34250092221 scopus 로고
    • Genetic algorithms and machine learning
    • D.E. Goldberg, and J.H. Holland Genetic algorithms and machine learning Mach Learn 3 1988 95 99
    • (1988) Mach Learn , vol.3 , pp. 95-99
    • Goldberg, D.E.1    Holland, J.H.2
  • 23
    • 84866883709 scopus 로고
    • A comparative analysis of selection schemes used in genetic algorithms
    • D.E. Goldberg, and K. Deb A comparative analysis of selection schemes used in genetic algorithms Urbana 51 1991 61801 62996
    • (1991) Urbana , vol.51 , pp. 61801-62996
    • Goldberg, D.E.1    Deb, K.2
  • 24
    • 78049411873 scopus 로고    scopus 로고
    • Determine the number of BP neural network hidden layer units
    • Y.H. Shen, Z.X. Wang, and C.Y. Gao Determine the number of BP neural network hidden layer units J Tianjin Polytechnic Univ 24 2008 13 15
    • (2008) J Tianjin Polytechnic Univ , vol.24 , pp. 13-15
    • Shen, Y.H.1    Wang, Z.X.2    Gao, C.Y.3
  • 25
    • 84867794436 scopus 로고    scopus 로고
    • Predication of concrete mix design using adaptive neural fuzzy inference systems and fuzzy inference systems
    • M. Neshat, A. Adeli, G. Sepidnam, and M. Sargolzaei Predication of concrete mix design using adaptive neural fuzzy inference systems and fuzzy inference systems Int J Adv Manuf Technol 63 2012 373 390
    • (2012) Int J Adv Manuf Technol , vol.63 , pp. 373-390
    • Neshat, M.1    Adeli, A.2    Sepidnam, G.3    Sargolzaei, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.