메뉴 건너뛰기




Volumn , Issue , 2007, Pages 229-234

Mixtures of robust probabilistic principal component analyzers

Author keywords

[No Author keywords available]

Indexed keywords

CURSE OF DIMENSIONALITY; HIGH DIMENSIONAL SPACES; LOCAL LINEAR MODELS; LOW-DIMENSIONAL MANIFOLDS; MIXTURE OF GAUSSIANS; PRINCIPAL DIRECTIONS; PRINCIPAL ORIENTATIONS; PROBABILISTIC PRINCIPAL COMPONENT ANALYZERS;

EID: 84887008371     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (11)
  • 3
    • 84898929664 scopus 로고    scopus 로고
    • M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, NIPS 10. The MIT Press
    • S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, NIPS 10. The MIT Press, 1998.
    • (1998) EM Algorithms For PCA and SPCA
    • Roweis, S.T.1
  • 5
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • D. Peel and G. J. McLachlan. Robust mixture modelling using the t distribution. Statistics and Computing, 10:339-348, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 6
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • L. Xu and A. L. Yuille. Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE trans. Neural Networks, 6(1):131-143, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2
  • 7
    • 5044226698 scopus 로고    scopus 로고
    • Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications
    • K. Huang, Y. Ma, and R. Vidal. Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications. In CVPR 2004, vol 2, pages 631-638.
    • (2004) In CVPR , vol.2 , pp. 631-638
    • Huang, K.1    Ma, Y.2    Vidal, R.3
  • 9
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 10
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2):443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 11
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using EM and its extensions, ECM and ECME
    • C. Liu and D. B. Rubin. ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica, 5:19-39, 1995.
    • (1995) Statistica Sinica , vol.5 , pp. 19-39
    • Liu, C.1    Rubin, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.