-
1
-
-
84899000575
-
Sparse greedy Gaussian process regression
-
In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
-
A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 619-625. MIT Press, 2001.
-
(2001)
Advances In Neural Information Processing Systems
, vol.13
, pp. 619-625
-
-
Smola, A.J.1
Bartlett, P.L.2
-
3
-
-
33646380511
-
Sparse Gaussian processes using pseudo-inputs
-
In Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press,
-
E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Scḧolkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18. MIT Press, 2006.
-
(2006)
Advances In Neural Information Processing Systems
, vol.18
-
-
Snelson, E.1
Ghahramani, Z.2
-
4
-
-
56749100556
-
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines, MIT Press
-
J. Quiñonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Approximation methods for Gaussian process regression. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines, pages 203-223. MIT Press, 2007.
-
(2007)
Approximation Methods For Gaussian Process Regression
, pp. 203-223
-
-
Quiñonero-Candela, J.1
Rasmussen, C.E.2
Williams, C.K.I.3
-
5
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. J. Smola. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):1000-1017, 1999.
-
(1999)
IEEE Transactions On Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.J.7
-
6
-
-
38149089662
-
Resilient simplification of kernel classifiers
-
In J. Marques de Sá et al., editors, LNCS, Springer-Verlag
-
T. Suttorp and C. Igel. Resilient simplification of kernel classifiers. In J. Marques de Sá et al., editors, Proceedings of the 17th International Conference on Artificial Neural Networks (ICANN 2007), volume 4668 of LNCS, pages 139-148. Springer-Verlag, 2007.
-
(2007)
Proceedings of the 17th International Conference On Artificial Neural Networks (ICANN 2007)
, pp. 139-148
-
-
Suttorp, T.1
Igel, C.2
-
7
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances in Computational Mathematics, 13(1):1-50, 2000.
-
(2000)
Advances In Computational Mathematics
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
12
-
-
0000263906
-
Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature space
-
P. Levi, R.-J. Ahlers, F. May, and M. Schanz, editors, pringer-Verlag
-
B. Schölkopf, P. Knirsch, A. J. Smola, and C. J. C. Burges. Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature space. In P. Levi, R.-J. Ahlers, F. May, and M. Schanz, editors, DAGM-Symposium, pages 124-132. Springer-Verlag, 1998.
-
(1998)
DAGM-Symposium
, pp. 124-132
-
-
Schölkopf, B.1
Knirsch, P.2
Smola, A.J.3
Burges, C.J.C.4
-
14
-
-
0028466750
-
Advanced supervised learning in multi-layer perceptrons - From backpropagation to adaptive learning algorithms
-
M. Riedmiller. Advanced supervised learning in multi-layer perceptrons - From backpropagation to adaptive learning algorithms. Computer Standards and Interfaces, 16(5):265-278, 1994.
-
(1994)
Computer Standards and Interfaces
, vol.16
, Issue.5
, pp. 265-278
-
-
Riedmiller, M.1
-
15
-
-
0037238922
-
Empirical evaluation of the improved Rprop learning algorithm
-
C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing, 50(C):105-123, 2003.
-
(2003)
Neurocomputing
, vol.50
, pp. 105-123
-
-
Igel, C.1
Hüsken, M.2
-
17
-
-
33845290264
-
Kernel least-squares models using updates of the pseudoinverse
-
E. Andelíc, M. Schaff̈oner, M. Katz, S. E. Kr̈uger, and A. Wendemuth. Kernel least-squares models using updates of the pseudoinverse. Neural Computation, 18:2928-2935, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 2928-2935
-
-
Andelić, C.1
Schafföner, M.2
Katz, M.3
Krüger, S.E.4
Wendemuth, A.5
|