메뉴 건너뛰기




Volumn 20, Issue 4, 2013, Pages 640-657

Statistical Power to Detect the Correct Number of Classes in Latent Profile Analysis

Author keywords

interclass distance; latent profile analysis; mixture models; model section methods; power

Indexed keywords

AKAIKE'S INFORMATION CRITERIONS; BAYESIAN INFORMATION CRITERION; INTER-CLASS DISTANCE; LIKELIHOOD RATIO TESTS; MIXTURE MODEL; MODEL SELECTION METHODS; POWER; PROFILE ANALYSIS;

EID: 84886897982     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2013.824781     Document Type: Article
Times cited : (988)

References (30)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In: Petrov B. N., Csaki F., editors Budapest, Hungary, Budapest,: Akademiai Kiado
    • Akaike, H. 1973. " Information theory and an extension of the maximum likelihood principle ". In Second international symposium on information theory, Edited by: Petrov, B. N. and Csaki, F. 267 - 281. Budapest, Hungary: Akademiai Kiado.
    • (1973) Second international symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H. 1987. Factor analysis and AIC. Psychometrika, 52: 317 - 332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 4
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux, G. and Soromenho, G. 1996. An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13: 195 - 212.
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 5
    • 0034241064 scopus 로고    scopus 로고
    • Detecting latent taxa: Monte Carlo comparison of taxometric, mixture model, and clustering procedures
    • Cleland, C. M., Rothschild, L. and Haslam, N. 2000. Detecting latent taxa: Monte Carlo comparison of taxometric, mixture model, and clustering procedures. Psychological Reports, 87: 37 - 47.
    • (2000) Psychological Reports , vol.87 , pp. 37-47
    • Cleland, C.M.1    Rothschild, L.2    Haslam, N.3
  • 7
    • 0012305994 scopus 로고
    • Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis
    • Gibson, W. A. 1959. Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis. Psychometrika, 24: 229 - 252.
    • (1959) Psychometrika , vol.24 , pp. 229-252
    • Gibson, W.A.1
  • 8
    • 0009329815 scopus 로고
    • The analysis of systems of qualitative variables when some of the variables are unobservable: Part I. A modified latent structure approach
    • Goodman, L. A. 1974a. The analysis of systems of qualitative variables when some of the variables are unobservable: Part I. A modified latent structure approach. The American Journal of Sociology, 79: 1179 - 1259.
    • (1974) The American Journal of Sociology , vol.79 , pp. 1179-1259
    • Goodman, L.A.1
  • 9
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifiable and unidentifiable models
    • Goodman, L. A. 1974b. Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61: 215 - 231.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • Goodman, L.A.1
  • 11
    • 0031287762 scopus 로고    scopus 로고
    • Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity
    • Jedidi, K., Jagpal, H. S. and DeSarbo, W. S. 1997. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16: 39 - 59.
    • (1997) Marketing Science , vol.16 , pp. 39-59
    • Jedidi, K.1    Jagpal, H.S.2    DeSarbo, W.S.3
  • 12
    • 0001453756 scopus 로고
    • The logical and mathematical foundation of latent structure analysis & The interpretation and mathematical foundation of latent structure analysis
    • In: Stouffer S. A., Guttman L., Suchman E. A., Lazarsfeld P. F., Star S. A., Clausen J. A., editors Princeton, NJ, Princeton, NJ,: Princeton University Press
    • Lazarsfeld, P. F. 1950. " The logical and mathematical foundation of latent structure analysis & The interpretation and mathematical foundation of latent structure analysis ". In Measurement and prediction, Edited by: Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A. and Clausen, J. A. 362 - 472. Princeton, NJ: Princeton University Press.
    • (1950) Measurement and prediction , pp. 362-472
    • Lazarsfeld, P.F.1
  • 14
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • Lo, Y., Mendell, N. R. and Rubin, D. B. 2001. Testing the number of components in a normal mixture. Biometrika, 88: 767 - 778.
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.R.2    Rubin, D.B.3
  • 15
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
    • Lubke, G. and Muthén, B. O. 2007. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14: 26 - 47.
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.1    Muthén, B.O.2
  • 16
    • 33846999872 scopus 로고    scopus 로고
    • Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
    • Lubke, G. and Neale, M. C. 2006. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?. Multivariate Behavioral Research, 41: 499 - 532.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 499-532
    • Lubke, G.1    Neale, M.C.2
  • 17
    • 0013118140 scopus 로고    scopus 로고
    • Power analysis and determination of sample size for covariance structure modeling
    • MacCallum, R. C., Browne, M. W. and Sugawara, H. M. 1996. Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1: 130 - 149.
    • (1996) Psychological Methods , vol.1 , pp. 130-149
    • MacCallum, R.C.1    Browne, M.W.2    Sugawara, H.M.3
  • 19
    • 78049497235 scopus 로고    scopus 로고
    • Mahalanobis distance
    • McLachlan, G. J. 1999. Mahalanobis distance. Resonance, 4: 20 - 26.
    • (1999) Resonance , vol.4 , pp. 20-26
    • McLachlan, G.J.1
  • 21
    • 0000546068 scopus 로고    scopus 로고
    • Taxometric analysis: II. Detecting taxonicity using covariance of two quantitative indicators in successive intervals of a third indicator (MAXCOV procedure)
    • Meehl, P. E. and Yonce, L. J. 1996. Taxometric analysis: II. Detecting taxonicity using covariance of two quantitative indicators in successive intervals of a third indicator (MAXCOV procedure). Psychological Reports, 78: 1091 - 1227.
    • (1996) Psychological Reports , vol.78 , pp. 1091-1227
    • Meehl, P.E.1    Yonce, L.J.2
  • 22
    • 0003753978 scopus 로고    scopus 로고
    • 6th ed., Los Angeles, CA, Los Angeles, CA,: Muthén & Muthén
    • Muthén, L. K. and Muthén, B. O. 1998-2010. Mplus user's guide, 6th ed., Los Angeles, CA: Muthén & Muthén.
    • Mplus user's guide
    • Muthén, L.K.1    Muthén, B.O.2
  • 24
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund, K. L., Asparouhov, T. and Muthén, B. O. 2007. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14: 535 - 569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6: 461 - 464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 26
    • 0000386489 scopus 로고
    • Application of model-selection criteria to some problems in multivariate analysis
    • Sclove, S. L. 1987. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52: 333 - 343.
    • (1987) Psychometrika , vol.52 , pp. 333-343
    • Sclove, S.L.1
  • 27
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in growth mixture models
    • In: Hancock G. R., Samuelsen K. M., editors Charlotte, NC, Charlotte, NC,: Information Age
    • Tofighi, D. and Enders, C. K. 2006. " Identifying the correct number of classes in growth mixture models ". In Advances in latent variable mixture models, Edited by: Hancock, G. R. and Samuelsen, K. M. 317 - 341. Charlotte, NC: Information Age.
    • (2006) Advances in latent variable mixture models , pp. 317-341
    • Tofighi, D.1    Enders, C.K.2
  • 28
    • 0012253128 scopus 로고    scopus 로고
    • Latent class cluster analysis
    • In: Hagennars J. A., McCutcheon A. L., editors Cambridge, UK, Cambridge,: Cambridge University Press
    • Vermunt, J. K. and Magidson, J. 2002. " Latent class cluster analysis ". In Applied latent class analysis, Edited by: Hagennars, J. A. and McCutcheon, A. L. 89 - 106. Cambridge, UK: Cambridge University Press.
    • (2002) Applied latent class analysis , pp. 89-106
    • Vermunt, J.K.1    Magidson, J.2
  • 30
    • 26444483914 scopus 로고    scopus 로고
    • Evaluating latent class analysis models in qualitative phenotype identification
    • Yang, C. C. 2006. Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics & Data Analysis, 50: 1090 - 1104.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 1090-1104
    • Yang, C.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.