-
2
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
In: Petrov B. N., Csaki F., editors Budapest, Hungary, Budapest,: Akademiai Kiado
-
Akaike, H. 1973. " Information theory and an extension of the maximum likelihood principle ". In Second international symposium on information theory, Edited by: Petrov, B. N. and Csaki, F. 267 - 281. Budapest, Hungary: Akademiai Kiado.
-
(1973)
Second international symposium on information theory
, pp. 267-281
-
-
Akaike, H.1
-
3
-
-
33845722419
-
Factor analysis and AIC
-
Akaike, H. 1987. Factor analysis and AIC. Psychometrika, 52: 317 - 332.
-
(1987)
Psychometrika
, vol.52
, pp. 317-332
-
-
Akaike, H.1
-
4
-
-
0030351528
-
An entropy criterion for assessing the number of clusters in a mixture model
-
Celeux, G. and Soromenho, G. 1996. An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13: 195 - 212.
-
(1996)
Journal of Classification
, vol.13
, pp. 195-212
-
-
Celeux, G.1
Soromenho, G.2
-
5
-
-
0034241064
-
Detecting latent taxa: Monte Carlo comparison of taxometric, mixture model, and clustering procedures
-
Cleland, C. M., Rothschild, L. and Haslam, N. 2000. Detecting latent taxa: Monte Carlo comparison of taxometric, mixture model, and clustering procedures. Psychological Reports, 87: 37 - 47.
-
(2000)
Psychological Reports
, vol.87
, pp. 37-47
-
-
Cleland, C.M.1
Rothschild, L.2
Haslam, N.3
-
7
-
-
0012305994
-
Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis
-
Gibson, W. A. 1959. Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis. Psychometrika, 24: 229 - 252.
-
(1959)
Psychometrika
, vol.24
, pp. 229-252
-
-
Gibson, W.A.1
-
8
-
-
0009329815
-
The analysis of systems of qualitative variables when some of the variables are unobservable: Part I. A modified latent structure approach
-
Goodman, L. A. 1974a. The analysis of systems of qualitative variables when some of the variables are unobservable: Part I. A modified latent structure approach. The American Journal of Sociology, 79: 1179 - 1259.
-
(1974)
The American Journal of Sociology
, vol.79
, pp. 1179-1259
-
-
Goodman, L.A.1
-
9
-
-
85041975304
-
Exploratory latent structure analysis using both identifiable and unidentifiable models
-
Goodman, L. A. 1974b. Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61: 215 - 231.
-
(1974)
Biometrika
, vol.61
, pp. 215-231
-
-
Goodman, L.A.1
-
10
-
-
0003634985
-
-
New York, NY, New York, NY,: Academic
-
Haberman, S. J. 1979. Analysis of qualitative data: New developments, Vol. 2, New York, NY: Academic.
-
(1979)
Analysis of qualitative data: New developments
, vol.2
-
-
Haberman, S.J.1
-
11
-
-
0031287762
-
Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity
-
Jedidi, K., Jagpal, H. S. and DeSarbo, W. S. 1997. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16: 39 - 59.
-
(1997)
Marketing Science
, vol.16
, pp. 39-59
-
-
Jedidi, K.1
Jagpal, H.S.2
DeSarbo, W.S.3
-
12
-
-
0001453756
-
The logical and mathematical foundation of latent structure analysis & The interpretation and mathematical foundation of latent structure analysis
-
In: Stouffer S. A., Guttman L., Suchman E. A., Lazarsfeld P. F., Star S. A., Clausen J. A., editors Princeton, NJ, Princeton, NJ,: Princeton University Press
-
Lazarsfeld, P. F. 1950. " The logical and mathematical foundation of latent structure analysis & The interpretation and mathematical foundation of latent structure analysis ". In Measurement and prediction, Edited by: Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A. and Clausen, J. A. 362 - 472. Princeton, NJ: Princeton University Press.
-
(1950)
Measurement and prediction
, pp. 362-472
-
-
Lazarsfeld, P.F.1
-
13
-
-
0003985164
-
-
Boston, MA, Boston, MA,: Houghton Mifflin
-
Lazarsfeld, P. F. and Henry, N. W. 1968. Latent structure analysis, Boston, MA: Houghton Mifflin.
-
(1968)
Latent structure analysis
-
-
Lazarsfeld, P.F.1
Henry, N.W.2
-
14
-
-
0038183179
-
Testing the number of components in a normal mixture
-
Lo, Y., Mendell, N. R. and Rubin, D. B. 2001. Testing the number of components in a normal mixture. Biometrika, 88: 767 - 778.
-
(2001)
Biometrika
, vol.88
, pp. 767-778
-
-
Lo, Y.1
Mendell, N.R.2
Rubin, D.B.3
-
15
-
-
33846951724
-
Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
-
Lubke, G. and Muthén, B. O. 2007. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14: 26 - 47.
-
(2007)
Structural Equation Modeling
, vol.14
, pp. 26-47
-
-
Lubke, G.1
Muthén, B.O.2
-
16
-
-
33846999872
-
Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
-
Lubke, G. and Neale, M. C. 2006. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?. Multivariate Behavioral Research, 41: 499 - 532.
-
(2006)
Multivariate Behavioral Research
, vol.41
, pp. 499-532
-
-
Lubke, G.1
Neale, M.C.2
-
17
-
-
0013118140
-
Power analysis and determination of sample size for covariance structure modeling
-
MacCallum, R. C., Browne, M. W. and Sugawara, H. M. 1996. Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1: 130 - 149.
-
(1996)
Psychological Methods
, vol.1
, pp. 130-149
-
-
MacCallum, R.C.1
Browne, M.W.2
Sugawara, H.M.3
-
19
-
-
78049497235
-
Mahalanobis distance
-
McLachlan, G. J. 1999. Mahalanobis distance. Resonance, 4: 20 - 26.
-
(1999)
Resonance
, vol.4
, pp. 20-26
-
-
McLachlan, G.J.1
-
20
-
-
0004066260
-
-
New York, NY, New York, NY,: Wiley
-
McLachlan, G. J. and Peel, D. 2000. Finite mixture models, New York, NY: Wiley.
-
(2000)
Finite mixture models
-
-
McLachlan, G.J.1
Peel, D.2
-
21
-
-
0000546068
-
Taxometric analysis: II. Detecting taxonicity using covariance of two quantitative indicators in successive intervals of a third indicator (MAXCOV procedure)
-
Meehl, P. E. and Yonce, L. J. 1996. Taxometric analysis: II. Detecting taxonicity using covariance of two quantitative indicators in successive intervals of a third indicator (MAXCOV procedure). Psychological Reports, 78: 1091 - 1227.
-
(1996)
Psychological Reports
, vol.78
, pp. 1091-1227
-
-
Meehl, P.E.1
Yonce, L.J.2
-
22
-
-
0003753978
-
-
6th ed., Los Angeles, CA, Los Angeles, CA,: Muthén & Muthén
-
Muthén, L. K. and Muthén, B. O. 1998-2010. Mplus user's guide, 6th ed., Los Angeles, CA: Muthén & Muthén.
-
Mplus user's guide
-
-
Muthén, L.K.1
Muthén, B.O.2
-
24
-
-
36849091981
-
Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
-
Nylund, K. L., Asparouhov, T. and Muthén, B. O. 2007. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14: 535 - 569.
-
(2007)
Structural Equation Modeling
, vol.14
, pp. 535-569
-
-
Nylund, K.L.1
Asparouhov, T.2
Muthén, B.O.3
-
25
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6: 461 - 464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
26
-
-
0000386489
-
Application of model-selection criteria to some problems in multivariate analysis
-
Sclove, S. L. 1987. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52: 333 - 343.
-
(1987)
Psychometrika
, vol.52
, pp. 333-343
-
-
Sclove, S.L.1
-
27
-
-
41149175664
-
Identifying the correct number of classes in growth mixture models
-
In: Hancock G. R., Samuelsen K. M., editors Charlotte, NC, Charlotte, NC,: Information Age
-
Tofighi, D. and Enders, C. K. 2006. " Identifying the correct number of classes in growth mixture models ". In Advances in latent variable mixture models, Edited by: Hancock, G. R. and Samuelsen, K. M. 317 - 341. Charlotte, NC: Information Age.
-
(2006)
Advances in latent variable mixture models
, pp. 317-341
-
-
Tofighi, D.1
Enders, C.K.2
-
28
-
-
0012253128
-
Latent class cluster analysis
-
In: Hagennars J. A., McCutcheon A. L., editors Cambridge, UK, Cambridge,: Cambridge University Press
-
Vermunt, J. K. and Magidson, J. 2002. " Latent class cluster analysis ". In Applied latent class analysis, Edited by: Hagennars, J. A. and McCutcheon, A. L. 89 - 106. Cambridge, UK: Cambridge University Press.
-
(2002)
Applied latent class analysis
, pp. 89-106
-
-
Vermunt, J.K.1
Magidson, J.2
-
29
-
-
0004265080
-
-
Belmont, MA, Belmont, MA,: Statistical Innovations
-
Vermunt, J. K. and Magidson, J. 2005. Latent GOLD 4.0 user manual, Belmont, MA: Statistical Innovations.
-
(2005)
Latent GOLD 4.0 user manual
-
-
Vermunt, J.K.1
Magidson, J.2
-
30
-
-
26444483914
-
Evaluating latent class analysis models in qualitative phenotype identification
-
Yang, C. C. 2006. Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics & Data Analysis, 50: 1090 - 1104.
-
(2006)
Computational Statistics & Data Analysis
, vol.50
, pp. 1090-1104
-
-
Yang, C.C.1
|