메뉴 건너뛰기




Volumn 20, Issue 4, 2013, Pages 616-639

Modeling Unobserved Heterogeneity Using Latent Profile Analysis: A Monte Carlo Simulation

Author keywords

cross sectional heterogeneity; latent class analysis; latent profile analysis; Monte Carlo simulation; numeration indexes; population heterogeneity

Indexed keywords

CROSS-SECTIONAL HETEROGENEITY; LATENT CLASS ANALYSIS; NUMERATION INDEXES; POPULATION HETEROGENEITY; PROFILE ANALYSIS;

EID: 84886892540     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2013.824780     Document Type: Article
Times cited : (221)

References (43)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In: Petrov B. N., Csaki F., editors Budapest, Hungary, Budapest,: Akademiai Kiado
    • Akaike, H. 1973. " Information theory and an extension of the maximum likelihood principle ". In Second international symposium on information theory, Edited by: Petrov, B. N. and Csaki, F. 267 - 281. Budapest, Hungary: Akademiai Kiado.
    • (1973) Second international symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 21144438166 scopus 로고
    • Likelihood of a model and information criteria
    • Akaike, H. 1981. Likelihood of a model and information criteria. Journal of Econometrics, 16: 3 - 14.
    • (1981) Journal of Econometrics , vol.16 , pp. 3-14
    • Akaike, H.1
  • 3
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H. 1987. Factor analysis and AIC. Psychometrika, 52: 317 - 332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 5
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for over-extraction of latent classes
    • Bauer, D. J. and Curran, P. J. 2003. Distributional assumptions of growth mixture models: Implications for over-extraction of latent classes. Psychological Methods, 8: 338 - 363.
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 6
    • 1942507464 scopus 로고    scopus 로고
    • The integration of continuous and discrete latent variable models: Potential problems and promising opportunities
    • Bauer, D. J. and Curran, P. J. 2004. The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9: 3 - 29.
    • (2004) Psychological Methods , vol.9 , pp. 3-29
    • Bauer, D.J.1    Curran, P.J.2
  • 8
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki, C. and Govaert, G. 1997. Using the classification likelihood to choose the number of clusters. Computing Science and Statistics, 29: 451 - 457.
    • (1997) Computing Science and Statistics , vol.29 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 9
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): The general theory and its analytic extensions
    • Bozdogan, H. 1987. Model selection and Akaike's information criterion (AIC): The general theory and its analytic extensions. Psychometrika, 52: 317 - 332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Bozdogan, H.1
  • 10
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of classes in a mixture model
    • Celeux, G. and Soromenho, G. 1996. An entropy criterion for assessing the number of classes in a mixture model. Journal of Classification, 13: 195 - 212.
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 11
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L. and Kam, C.-M. 2001. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6: 330 - 351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 14
    • 33745601740 scopus 로고    scopus 로고
    • Local solutions in the estimation of growth mixture models
    • Hipp, J. R. and Bauer, D. J. 2006. Local solutions in the estimation of growth mixture models. Psychological Methods, 11: 36 - 53.
    • (2006) Psychological Methods , vol.11 , pp. 36-53
    • Hipp, J.R.1    Bauer, D.J.2
  • 15
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich, C. M. and Tsai, C. 1989. Regression and time series model selection in small samples. Biometrika, 76: 297 - 307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.2
  • 17
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • Lo, Y., Mendell, N. and Rubin, D. B. 2001. Testing the number of components in a normal mixture. Biometrika, 88: 767 - 778.
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.2    Rubin, D.B.3
  • 18
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
    • Lubke, G. and Muthén, B. O. 2007. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14: 26 - 47.
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.1    Muthén, B.O.2
  • 19
    • 33846999872 scopus 로고    scopus 로고
    • Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
    • Lubke, G. and Neale, M. C. 2006. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?. Multivariate Behavioral Research, 41: 499 - 532.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 499-532
    • Lubke, G.1    Neale, M.C.2
  • 20
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • Lubke, G. H. and Muthén, B. 2005. Investigating population heterogeneity with factor mixture models. Psychological Methods, 10: 21 - 39.
    • (2005) Psychological Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.2
  • 21
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan, G. J. 1987. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics, 36: 318 - 324.
    • (1987) Applied Statistics , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 22
    • 79952599395 scopus 로고    scopus 로고
    • Commentary on Steinley and Brusco (2011): Recommendations and cautions
    • McLachlan, G. J. 2011. Commentary on Steinley and Brusco (2011): Recommendations and cautions. Psychological Methods, 16: 80 - 81.
    • (2011) Psychological Methods , vol.16 , pp. 80-81
    • McLachlan, G.J.1
  • 24
    • 58149368765 scopus 로고
    • The unicorn, the normal curve, and other improbable creatures
    • Micceri, T. 1989. The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105: 156 - 166.
    • (1989) Psychological Bulletin , vol.105 , pp. 156-166
    • Micceri, T.1
  • 25
    • 0037926209 scopus 로고
    • On the arbitrary nature of latent variables
    • In: Clogg C., von Eye A., editors Thousand Oaks, CA, Thousand Oaks, CA,: Sage
    • Molenaar, P. and von Eye, A. 1994. " On the arbitrary nature of latent variables ". In Latent variables analysis: Applications for developmental research, Edited by: Clogg, C. and von Eye, A. 226 - 242. Thousand Oaks, CA: Sage.
    • (1994) Latent variables analysis: Applications for developmental research , pp. 226-242
    • Molenaar, P.1    von Eye, A.2
  • 26
    • 0142136682 scopus 로고    scopus 로고
    • Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003)
    • Muthén, B. (2003. Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Method, 8: 369 - 377.
    • (2003) Psychological Method , vol.8 , pp. 369-377
    • Muthén, B.1
  • 27
    • 33746906608 scopus 로고    scopus 로고
    • Should substance use disorders be considered as categorical or dimensional?
    • Muthén, B. 2006. Should substance use disorders be considered as categorical or dimensional?. Addiction, 101: 6 - 16.
    • (2006) Addiction , vol.101 , pp. 6-16
    • Muthén, B.1
  • 28
    • 33646828382 scopus 로고    scopus 로고
    • Item response mixture modeling: Application to tobacco dependence criteria
    • Muthén, B. and Asparouhov, T. 2006. Item response mixture modeling: Application to tobacco dependence criteria. Addictive Behaviors, 31: 1050 - 1066.
    • (2006) Addictive Behaviors , vol.31 , pp. 1050-1066
    • Muthén, B.1    Asparouhov, T.2
  • 29
    • 33745758361 scopus 로고    scopus 로고
    • Advances in behavioral genetics modeling using Mplus: Applications of factor mixture modeling to twin data
    • Muthén, B., Asparouhov, T. and Rebollo, I. 2006. Advances in behavioral genetics modeling using Mplus: Applications of factor mixture modeling to twin data. Twin Research and Human Genetics, 9: 313 - 324.
    • (2006) Twin Research and Human Genetics , vol.9 , pp. 313-324
    • Muthén, B.1    Asparouhov, T.2    Rebollo, I.3
  • 30
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • In: Kaplan D., editors Newbury Park, CA, Newbury Park, CA,: Sage
    • Muthén, B. O. 2004. " Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data ". In Handbook of quantitative methodology for the social sciences, Edited by: Kaplan, D. 345 - 368. Newbury Park, CA: Sage.
    • (2004) Handbook of quantitative methodology for the social sciences , pp. 345-368
    • Muthén, B.O.1
  • 31
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund, K. L., Asparouhov, T. and Muthén, B. O. 2007. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14: 535 - 569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 34
    • 84861591786 scopus 로고    scopus 로고
    • How well does growth mixture modeling identify heterogeneous growth trajectories? A simulation study examining GMM's performance characteristics
    • Peugh, J. L. and Fan, X. 2012. How well does growth mixture modeling identify heterogeneous growth trajectories? A simulation study examining GMM's performance characteristics. Structural Equation Modeling, 19: 204 - 226.
    • (2012) Structural Equation Modeling , vol.19 , pp. 204-226
    • Peugh, J.L.1    Fan, X.2
  • 35
    • 0000120766 scopus 로고
    • Estimating the dimensions of a model
    • Schwartz, G. 1978. Estimating the dimensions of a model. The Annals of Statistics, 6: 461 - 464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 36
    • 0000386489 scopus 로고
    • Application of model selection criteria to some problems in multivariate analysis
    • Sclove, L. S. 1987. Application of model selection criteria to some problems in multivariate analysis. Psychometrika, 52: 333 - 343.
    • (1987) Psychometrika , vol.52 , pp. 333-343
    • Sclove, L.S.1
  • 37
    • 79952595368 scopus 로고    scopus 로고
    • Evaluating mixture modeling for clustering: Recommendations and cautions
    • Steinley, D. and Brusco, M. J. 2011a. Evaluating mixture modeling for clustering: Recommendations and cautions. Psychological Methods, 16: 63 - 79.
    • (2011) Psychological Methods , vol.16 , pp. 63-79
    • Steinley, D.1    Brusco, M.J.2
  • 38
    • 79952593483 scopus 로고    scopus 로고
    • K-means clustering and mixture model clustering: Reply to McLachlan (2011) and Vermunt (2011)
    • Steinley, D. and Brusco, M. J. 2011b. K-means clustering and mixture model clustering: Reply to McLachlan (2011) and Vermunt (2011). Psychological Methods, 16: 89 - 92.
    • (2011) Psychological Methods , vol.16 , pp. 89-92
    • Steinley, D.1    Brusco, M.J.2
  • 39
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in growth mixture models
    • In: Hancock G. R., Samuelsen K. M., editors Charlotte, NC, Charlotte, NC,: Information Age
    • Tofighi, D. and Enders, C. K. 2008. " Identifying the correct number of classes in growth mixture models ". In Advances in latent variable mixture models, Edited by: Hancock, G. R. and Samuelsen, K. M. 317 - 341. Charlotte, NC: Information Age.
    • (2008) Advances in latent variable mixture models , pp. 317-341
    • Tofighi, D.1    Enders, C.K.2
  • 40
    • 79952581001 scopus 로고    scopus 로고
    • K-means may perform as well as mixture model clustering but may also be much worse: Comment on Steinley and Brusco (2011)
    • Vermunt, J. K. 2011. K-means may perform as well as mixture model clustering but may also be much worse: Comment on Steinley and Brusco (2011). Psychological Methods, 16: 82 - 88.
    • (2011) Psychological Methods , vol.16 , pp. 82-88
    • Vermunt, J.K.1
  • 41
    • 0012253128 scopus 로고    scopus 로고
    • Latent class cluster analysis
    • In: Hagenaars J. A., McCutcheon A. L., editors Cambridge, UK, Cambridge,: Cambridge University Press
    • Vermunt, J. K. and Magidson, J. 2002. " Latent class cluster analysis ". In Applied latent class analysis, Edited by: Hagenaars, J. A. and McCutcheon, A. L. 89 - 106. Cambridge, UK: Cambridge University Press.
    • (2002) Applied latent class analysis , pp. 89-106
    • Vermunt, J.K.1    Magidson, J.2
  • 43
    • 26444483914 scopus 로고    scopus 로고
    • Evaluating latent class analysis models in qualitative phenotype identification
    • Yang, C.-C. 2006. Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics & Data Analysis, 50: 1090 - 1104.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 1090-1104
    • Yang, C.-C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.