메뉴 건너뛰기




Volumn 3, Issue 6, 2013, Pages 355-380

Multidimensional compressed sensing and their applications

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION OVERHEADS; CONFLICT OF INTEREST; CONFLICTS OF INTEREST; HYPERSPECTRAL IMAGING; INCOMPLETE INFORMATION; MULTI-DIMENSIONAL STRUCTURE; MULTIDIMENSIONAL SIGNALS; RECONSTRUCTION ALGORITHMS;

EID: 84886738116     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1108     Document Type: Article
Times cited : (91)

References (107)
  • 2
    • 33645712892 scopus 로고    scopus 로고
    • Compressed Sensing
    • Donoho D. Compressed Sensing. IEEE Trans Inf Theory 2006, 52:1289-1306.
    • (2006) IEEE Trans Inf Theory , vol.52 , pp. 1289-1306
    • Donoho, D.1
  • 3
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 2006, 52:489-509.
    • (2006) IEEE Trans Inf Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 6
    • 34548093547 scopus 로고    scopus 로고
    • Random projections imaging with extended space-bandwidth product
    • Stern A, Javidi B. Random projections imaging with extended space-bandwidth product. J Display Technol 2007, 3:315-320.
    • (2007) J Display Technol , vol.3 , pp. 315-320
    • Stern, A.1    Javidi, B.2
  • 7
    • 84886731261 scopus 로고    scopus 로고
    • Random lens imaging. MIT CSAIL Technical Report
    • Fergus R, Torralba A, Freeman WT. Random lens imaging. MIT CSAIL Technical Report, 2006.
    • (2006)
    • Fergus, R.1    Torralba, A.2    Freeman, W.T.3
  • 8
    • 51449087075 scopus 로고    scopus 로고
    • Compressive coded aperture superresolution image reconstruction. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing., 833-836.
    • Marcia RF, Willett RM. Compressive coded aperture superresolution image reconstruction. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2007, 833-836.
    • (2007)
    • Marcia, R.F.1    Willett, R.M.2
  • 10
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 2006, 15:3736-3745.
    • (2006) IEEE Trans Image Process , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 11
    • 55149117992 scopus 로고    scopus 로고
    • Learning multiscale sparse representations for image and video restoration
    • Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations for image and video restoration. Multiscale Model Simul 2008, 7:214-241.
    • (2008) Multiscale Model Simul , vol.7 , pp. 214-241
    • Mairal, J.1    Sapiro, G.2    Elad, M.3
  • 13
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process 2008, 17:53-69.
    • (2008) IEEE Trans Image Process , vol.17 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 14
    • 32944474079 scopus 로고    scopus 로고
    • Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory
    • Guleryuz OG. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory. IEEE Trans Image Process 2006, 15:539-554.
    • (2006) IEEE Trans Image Process , vol.15 , pp. 539-554
    • Guleryuz, O.G.1
  • 15
    • 60649102899 scopus 로고    scopus 로고
    • Inpainting and zooming using sparse representations
    • Fadili MJ, Starck J-L, Murtagh F. Inpainting and zooming using sparse representations. Comput J 2008, 52:64-79.
    • (2008) Comput J , vol.52 , pp. 64-79
    • Fadili, M.J.1    Starck, J.-L.2    Murtagh, F.3
  • 16
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • Candes EJ, Plan Y. Matrix completion with noise. Proc IEEE 2010, 98:925-936.
    • (2010) Proc IEEE , vol.98 , pp. 925-936
    • Candes, E.J.1    Plan, Y.2
  • 17
    • 73949092310 scopus 로고    scopus 로고
    • Super-resolution and reconstruction of sparse sub-wavelength images
    • Gazit S, Szameit A, Eldar YC, Segev M. Super-resolution and reconstruction of sparse sub-wavelength images. Opt Express 2009, 17:23920-23946.
    • (2009) Opt Express , vol.17 , pp. 23920-23946
    • Gazit, S.1    Szameit, A.2    Eldar, Y.C.3    Segev, M.4
  • 18
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image. Proceedings of the IEEE International Conference on Computer Vision, 349-356.
    • Glasner D, Bagon S, Irani M. Super-resolution from a single image. Proceedings of the IEEE International Conference on Computer Vision, 2009, 349-356.
    • (2009)
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 20
    • 36749072615 scopus 로고    scopus 로고
    • Majorization-minimization algorithms for wavelet-based image restoration
    • Figueiredo M, Bioucas-Dias JM, Nowak RD. Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 2007, 16:2980-2991.
    • (2007) IEEE Trans Image Process , vol.16 , pp. 2980-2991
    • Figueiredo, M.1    Bioucas-Dias, J.M.2    Nowak, R.D.3
  • 21
    • 67649639171 scopus 로고    scopus 로고
    • Efficient blind separable kernel deconvolution for image deblurring. 2nd International Conference on Signal Processing and Communication Systems, 2008. (ICSPCS 2008), 1-7.
    • Kennedy RA, Samarasinghe PD. Efficient blind separable kernel deconvolution for image deblurring. 2nd International Conference on Signal Processing and Communication Systems, 2008. (ICSPCS 2008), 2008, 1-7.
    • Kennedy, R.A.1    Samarasinghe, P.D.2
  • 22
    • 33645136947 scopus 로고    scopus 로고
    • Bayesian wavelet-based image deconvolution a GEM algorithm exploiting a class of heavy-tailed priors
    • Bioucas-Dias JM. Bayesian wavelet-based image deconvolution a GEM algorithm exploiting a class of heavy-tailed priors. IEEE Trans Image Process 2006, 15:937-951.
    • (2006) IEEE Trans Image Process , vol.15 , pp. 937-951
    • Bioucas-Dias, J.M.1
  • 23
    • 84860189704 scopus 로고    scopus 로고
    • Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity
    • Yu G, Sapiro G, Mallat S. Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans Image Process 2012, 21:2481-2499.
    • (2012) IEEE Trans Image Process , vol.21 , pp. 2481-2499
    • Yu, G.1    Sapiro, G.2    Mallat, S.3
  • 26
    • 80051736221 scopus 로고    scopus 로고
    • Structured compressed sensing: from theory to applications
    • Duarte MF, Eldar YC. Structured compressed sensing: from theory to applications. IEEE Trans Signal Process 2011, 59:4053-4085.
    • (2011) IEEE Trans Signal Process , vol.59 , pp. 4053-4085
    • Duarte, M.F.1    Eldar, Y.C.2
  • 29
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev 2009, 51:455-500.
    • (2009) SIAM Rev , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 31
    • 57349099263 scopus 로고    scopus 로고
    • Optimal non-linear models for sparsity and sampling
    • Aldroubi A, Cabrelli C, Molter U. Optimal non-linear models for sparsity and sampling. J Fourier Anal Appl 2008, 14:793-812.
    • (2008) J Fourier Anal Appl , vol.14 , pp. 793-812
    • Aldroubi, A.1    Cabrelli, C.2    Molter, U.3
  • 33
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006, 54:4311-4322.
    • (2006) IEEE Trans Signal Process , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 34
    • 77952714665 scopus 로고    scopus 로고
    • Dictionaries for sparse representation modeling
    • Rubinstein R, Bruckstein AM, Elad M. Dictionaries for sparse representation modeling. Proc IEEE 2010, 98:1045-1057.
    • (2010) Proc IEEE , vol.98 , pp. 1045-1057
    • Rubinstein, R.1    Bruckstein, A.M.2    Elad, M.3
  • 35
    • 0037418225 scopus 로고    scopus 로고
    • Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
    • Donoho DL, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc Natl Acad Sci U S A 2003, 100:2197.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 2197
    • Donoho, D.L.1    Elad, M.2
  • 36
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: universal encoding strategies?
    • Candès EJ, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 2006, 52:5406-5425.
    • (2006) IEEE Trans Inf Theory , vol.52 , pp. 5406-5425
    • Candès, E.J.1    Tao, T.2
  • 37
    • 77952743135 scopus 로고    scopus 로고
    • Computational methods for sparse solution of linear inverse problems
    • Tropp JA, Wright SJ. Computational methods for sparse solution of linear inverse problems. Proc IEEE 2010, 98:948-958.
    • (2010) Proc IEEE , vol.98 , pp. 948-958
    • Tropp, J.A.1    Wright, S.J.2
  • 38
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp JA. Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory 2004, 50:2231-2242.
    • (2004) IEEE Trans Inf Theory , vol.50 , pp. 2231-2242
    • Tropp, J.A.1
  • 39
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM Rev 2001, 43:129-159.
    • (2001) SIAM Rev , vol.43 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 40
    • 84886731993 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements. Transactions of the IRE Professional Group on Audio, 2005.
    • Candès EJ, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Transactions of the IRE Professional Group on Audio, 2005.
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 41
    • 65649137930 scopus 로고    scopus 로고
    • Probing the pareto frontier for basis pursuit solutions
    • Van Den Berg E, Friedlander MP. Probing the pareto frontier for basis pursuit solutions. SIAM J Sci Comput 2008, 31:890-912.
    • (2008) SIAM J Sci Comput , vol.31 , pp. 890-912
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 42
    • 84886736505 scopus 로고    scopus 로고
    • SPGL1: A Solver for Large-Scale Sparse Reconstruction. Available at:
    • Van Den Berg E, Friedlander MP. SPGL1: A Solver for Large-Scale Sparse Reconstruction. 2007. Available at: http://www.cs.ubc.ca/labs/scl/spgl1.
    • (2007)
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 43
    • 65649137672 scopus 로고    scopus 로고
    • Compressed imaging with a separable sensing operator
    • Rivenson Y, Stern A. Compressed imaging with a separable sensing operator. IEEE Signal Process Lett 2009, 16:449-452.
    • (2009) IEEE Signal Process Lett , vol.16 , pp. 449-452
    • Rivenson, Y.1    Stern, A.2
  • 44
    • 0028479246 scopus 로고
    • Adaptive time-frequency decompositions
    • Davis GM, Mallat SG, Zhang Z. Adaptive time-frequency decompositions. Opt Eng 1994, 33:2183.
    • (1994) Opt Eng , vol.33 , pp. 2183
    • Davis, G.M.1    Mallat, S.G.2    Zhang, Z.3
  • 45
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 2007, 53:4655-4666.
    • (2007) IEEE Trans Inf Theory , vol.53 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 46
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • Needell D, Tropp JA. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 2009, 26:301-321.
    • (2009) Appl Comput Harmon Anal , vol.26 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 48
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Candès EJ, Tao T. Decoding by linear programming. IEEE Trans Inf Theory 2005, 51:4203-4215.
    • (2005) IEEE Trans Inf Theory , vol.51 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 49
    • 77949732443 scopus 로고    scopus 로고
    • Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit
    • Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Select Topic Signal Process 2014, 4:310-316.
    • (2014) IEEE J Select Topic Signal Process , vol.4 , pp. 310-316
    • Needell, D.1    Vershynin, R.2
  • 50
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Candes EJ, Romberg JK, T Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59:1207-1223,.
    • (2006) Comm Pure Appl Math , vol.59 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3
  • 51
    • 0002200027 scopus 로고
    • Implications of factor analysis of three-way matrices for measurement of Change
    • In: Harris CW, ed. Madison: University of Wisconsin Press;
    • Tucker LR. Implications of factor analysis of three-way matrices for measurement of Change. In: Harris CW, ed. Measurement of Change. Madison: University of Wisconsin Press; 1963, 122-137.
    • (1963) Measurement of Change , pp. 122-137
    • Tucker, L.R.1
  • 52
    • 84886739197 scopus 로고    scopus 로고
    • A literature survey of low-rank tensor approximation techniques. arXiv.org, math
    • Grasedyck L, Kressner D, Tobler C. A literature survey of low-rank tensor approximation techniques. arXiv.org, math, 2013.
    • (2013)
    • Grasedyck, L.1    Kressner, D.2    Tobler, C.3
  • 53
    • 85032750955 scopus 로고    scopus 로고
    • The higher-order singular value decomposition: theory and an application lecture notes
    • Bergqvist G, Larsson E. The higher-order singular value decomposition: theory and an application lecture notes. IEEE Signal Process Mag 2010, 27:151-154.
    • (2010) IEEE Signal Process Mag , vol.27 , pp. 151-154
    • Bergqvist, G.1    Larsson, E.2
  • 54
    • 77953068853 scopus 로고    scopus 로고
    • Iterative sequential GSVD (IS-GSVD) based prewhitening for multidimensional HOSVD based subspace estimation without knowledge of the noise covariance information. 2010 International ITG Workshop on Smart Antennas (WSA), 2010, 151-155.
    • Da Costa JPCL, Roemer F, Haardt M. Iterative sequential GSVD (IS-GSVD) based prewhitening for multidimensional HOSVD based subspace estimation without knowledge of the noise covariance information. 2010 International ITG Workshop on Smart Antennas (WSA), 2010, 151-155.
    • Da Costa, J.P.C.L.1    Roemer, F.2    Haardt, M.3
  • 55
    • 46649109335 scopus 로고    scopus 로고
    • Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems
    • Haardt M, Roemer F, Del Galdo G. Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems. IEEE Trans Signal Process 2008, 56:3198-3213.
    • (2008) IEEE Trans Signal Process , vol.56 , pp. 3198-3213
    • Haardt, M.1    Roemer, F.2    Del Galdo, G.3
  • 56
    • 79960865296 scopus 로고    scopus 로고
    • Applications of tensor (multiway array) factorizations and decompositions in data mining
    • Mørup M. Applications of tensor (multiway array) factorizations and decompositions in data mining. WIREs: Data Mining Knowl Discov 2011, 1:24-40.
    • (2011) WIREs: Data Mining Knowl Discov , vol.1 , pp. 24-40
    • Mørup, M.1
  • 57
    • 79953814105 scopus 로고    scopus 로고
    • Tensor algebra and multi-dimensional harmonic retrieval in signal processing for MIMO radar
    • Nion D, Sidiropoulos D. Tensor algebra and multi-dimensional harmonic retrieval in signal processing for MIMO radar. IEEE Trans Signal Process 2010, 58:1.
    • (2010) IEEE Trans Signal Process , vol.58 , pp. 1
    • Nion, D.1    Sidiropoulos, D.2
  • 59
    • 84886732544 scopus 로고    scopus 로고
    • Multilinear algebra for analyzing data with multiple linkages. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Kolda T, Dunlavy D, Kegelmeyer WP. Multilinear algebra for analyzing data with multiple linkages. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.
    • (2006)
    • Kolda, T.1    Dunlavy, D.2    Kegelmeyer, W.P.3
  • 60
    • 77956009889 scopus 로고    scopus 로고
    • Multiarray signal processing: tensor decomposition meets compressed sensing
    • Lim L-H, Comon P. Multiarray signal processing: tensor decomposition meets compressed sensing. C R Mécanique 2010, 338:10-10.
    • (2010) C R Mécanique , vol.338 , pp. 10-10
    • Lim, L.-H.1    Comon, P.2
  • 62
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low-n-rank tensor recovery via convex optimization
    • Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl 2011, 27:025010.
    • (2011) Inverse Probl , vol.27 , pp. 025010
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 63
    • 84866665200 scopus 로고    scopus 로고
    • Multi-way compressed sensing for sparse low-rank tensors
    • Sidiropoulos ND, Kyrillidis A. Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Process Lett 2012, 19:757-760.
    • (2012) IEEE Signal Process Lett , vol.19 , pp. 757-760
    • Sidiropoulos, N.D.1    Kyrillidis, A.2
  • 64
    • 84867599880 scopus 로고    scopus 로고
    • Block sparse representations of tensors using kronecker bases. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2709-2712.
    • Caiafa CF, Cichocki A. Block sparse representations of tensors using kronecker bases. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, 2709-2712.
    • (2012)
    • Caiafa, C.F.1    Cichocki, A.2
  • 65
    • 84878190177 scopus 로고    scopus 로고
    • Computing sparse representations of multidimensional signals using kronecker bases
    • 25:-.
    • Caiafa CF, Cichocki A. Computing sparse representations of multidimensional signals using kronecker bases. Neural Comput 2013, 25:186-220.
    • (2013) Neural Comput , pp. 186-220
    • Caiafa, C.F.1    Cichocki, A.2
  • 66
    • 84856046625 scopus 로고    scopus 로고
    • Sparse optimization with least-squares constraints
    • Van Den Berg E, Friedlander MP. Sparse optimization with least-squares constraints. SIAM J Optim 2011, 21:1201-1229.
    • (2011) SIAM J Optim , vol.21 , pp. 1201-1229
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 67
    • 84886735583 scopus 로고    scopus 로고
    • Circulant and toeplitz matrices in compressed sensing. Transactions of the IRE Professional Group on Audio., 1-7.
    • Rauhut H. Circulant and toeplitz matrices in compressed sensing. Transactions of the IRE Professional Group on Audio. 2009, 1-7.
    • (2009)
    • Rauhut, H.1
  • 68
    • 51449102614 scopus 로고    scopus 로고
    • Fast compressive sampling with structurally random matrices. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008 (ICASSP 2008), 3369-3372.
    • Do TT, Tran TD, Gan L. Fast compressive sampling with structurally random matrices. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008 (ICASSP 2008), 2008, 3369-3372.
    • Do, T.T.1    Tran, T.D.2    Gan, L.3
  • 70
    • 77956563404 scopus 로고    scopus 로고
    • Toeplitz compressed sensing matrices with applications to sparse channel estimation
    • Haupt J, Bajwa WU, Raz G, Nowak R. Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans Inf Theory 2010, 56:5862-5875.
    • (2010) IEEE Trans Inf Theory , vol.56 , pp. 5862-5875
    • Haupt, J.1    Bajwa, W.U.2    Raz, G.3    Nowak, R.4
  • 73
    • 77952735253 scopus 로고    scopus 로고
    • Compressive sensing on a CMOS separable-transform image sensor
    • Robucci R, Gray JD, Romberg LK, Chiu J, Hasler P. Compressive sensing on a CMOS separable-transform image sensor. Proc IEEE, 2010, 98:1089-1101.
    • (2010) Proc IEEE , vol.98 , pp. 1089-1101
    • Robucci, R.1    Gray, J.D.2    Romberg, L.K.3    Chiu, J.4    Hasler, P.5
  • 75
    • 33747727601 scopus 로고    scopus 로고
    • Wavelet-based Statistical Signal Processing Using Hidden Markov Models
    • Crouse MS, Nowak RD, Baraniuk RG. Wavelet-based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans Signal Process 1998, 46:886-902.
    • (1998) IEEE Trans Signal Process , vol.46 , pp. 886-902
    • Crouse, M.S.1    Nowak, R.D.2    Baraniuk, R.G.3
  • 76
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Eldar YC, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Trans Inf Theory 2009, 55:5302-5316.
    • (2009) IEEE Trans Inf Theory , vol.55 , pp. 5302-5316
    • Eldar, Y.C.1    Mishali, M.2
  • 77
    • 84886742535 scopus 로고    scopus 로고
    • Block-sparse signals: uncertainty relations and efficient recovery
    • Eldar Y, Kuppinger P, Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process 2011, 59:4053-4085.
    • (2011) IEEE Trans Signal Process , vol.59 , pp. 4053-4085
    • Eldar, Y.1    Kuppinger, P.2    Bolcskei, H.3
  • 78
    • 70349823220 scopus 로고    scopus 로고
    • Sparse solutions to underdetermined kronecker product systems
    • Jokar S, Mehrmann V. Sparse solutions to underdetermined kronecker product systems. Linear Algebra Appl 2009, 431:2437-2447.
    • (2009) Linear Algebra Appl , vol.431 , pp. 2437-2447
    • Jokar, S.1    Mehrmann, V.2
  • 79
    • 0033248623 scopus 로고    scopus 로고
    • Wedgelets: Nearly minimax estimation of edges
    • Donoho DL. Wedgelets: Nearly minimax estimation of edges. Ann Stat 1999, 27:859-897.
    • (1999) Ann Stat , vol.27 , pp. 859-897
    • Donoho, D.L.1
  • 80
    • 0346727379 scopus 로고    scopus 로고
    • Ridgelets: A key to higher-dimensional intermittency?
    • Candès EJ, Donoho DL. Ridgelets: A key to higher-dimensional intermittency? Philos Trans R Soc Lond A 1999, 357:2495-2509.
    • (1999) Philos Trans R Soc Lond A , vol.357 , pp. 2495-2509
    • Candès, E.J.1    Donoho, D.L.2
  • 82
    • 78649857318 scopus 로고    scopus 로고
    • A new contourlet transform with sharp frequency localization. Proceedings of the IEEE International Conference on Image Processing, 1629-1632.
    • Lu Y, Do MN. A new contourlet transform with sharp frequency localization. Proceedings of the IEEE International Conference on Image Processing, 2006, 1629-1632.
    • (2006)
    • Lu, Y.1    Do, M.N.2
  • 83
    • 17544369568 scopus 로고    scopus 로고
    • Sparse geometric image representations with bandelets
    • Le Pennec E, Mallat S. Sparse geometric image representations with bandelets. IEEE Trans Image Process 2005, 14:423-438.
    • (2005) IEEE Trans Image Process , vol.14 , pp. 423-438
    • Le Pennec, E.1    Mallat, S.2
  • 84
    • 77953788888 scopus 로고    scopus 로고
    • Dictionary identification: sparse matrix-factorization via l1 -minimization
    • Gribonval R, Schnass K. Dictionary identification: sparse matrix-factorization via l1 -minimization. Trans Inf Theory 2010, 56:3523-3539.
    • (2010) Trans Inf Theory , vol.56 , pp. 3523-3539
    • Gribonval, R.1    Schnass, K.2
  • 86
    • 84886739620 scopus 로고    scopus 로고
    • Frame design using FOCUSS with method of optimal directions (MOD). Norwegian Signal Processing Symposium
    • Engan K, Rao BD, Kreutz-Delgado K. Frame design using FOCUSS with method of optimal directions (MOD). Norwegian Signal Processing Symposium, 1999, 65-69.
    • (1999) , pp. 65-69
    • Engan, K.1    Rao, B.D.2    Kreutz-Delgado, K.3
  • 87
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity: learning sparse dictionaries for sparse signal approximation
    • Rubinstein R, Zibulevsky M, Elad M. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans Signal Process 2010, 58:1553-1564.
    • (2010) IEEE Trans Signal Process , vol.58 , pp. 1553-1564
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 89
    • 49049105868 scopus 로고    scopus 로고
    • Fast, exact k-space sample density compensation for trajectories composed of rotationally symmetric segments, and the SNR-optimized image reconstruction from non-Cartesian samples
    • Mitsouras D, Mulkern RV, Rybicki FJ. Fast, exact k-space sample density compensation for trajectories composed of rotationally symmetric segments, and the SNR-optimized image reconstruction from non-Cartesian samples. Magn Reson Med 2008, 60:339-349.
    • (2008) Magn Reson Med , vol.60 , pp. 339-349
    • Mitsouras, D.1    Mulkern, R.V.2    Rybicki, F.J.3
  • 90
    • 58049195322 scopus 로고    scopus 로고
    • Highly undersampled magnetic resonance image reconstruction via homotopic
    • Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopic. IEEE Trans Med Imaging 2009, 28:106-121.
    • (2009) IEEE Trans Med Imaging , vol.28 , pp. 106-121
    • Trzasko, J.1    Manduca, A.2
  • 91
    • 84886730473 scopus 로고    scopus 로고
    • Optimization of k-space trajectories for compressed sensing by Bayesian experimental design
    • Seeger M, Nickisch H, Pohmann R, Scholkopf B. Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magn Reson Med 2009.
    • (2009) Magn Reson Med
    • Seeger, M.1    Nickisch, H.2    Pohmann, R.3    Scholkopf, B.4
  • 92
    • 84870352408 scopus 로고    scopus 로고
    • A simple application of compressed sensing to further accelerate partially parallel imaging
    • Miao J, Guo W, Narayan S, Wilson DL. A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 2013, 31:75-85.
    • (2013) Magn Reson Imaging , vol.31 , pp. 75-85
    • Miao, J.1    Guo, W.2    Narayan, S.3    Wilson, D.L.4
  • 94
    • 79955624809 scopus 로고    scopus 로고
    • Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR
    • Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011, 30:1042-1054.
    • (2011) IEEE Trans Med Imaging , vol.30 , pp. 1042-1054
    • Lingala, S.G.1    Hu, Y.2    DiBella, E.3    Jacob, M.4
  • 95
    • 84877116426 scopus 로고    scopus 로고
    • Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency
    • Majumdar A. Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency. Magn Reson Imaging 2012, 1-7:789-795.
    • (2012) Magn Reson Imaging , Issue.1-7 , pp. 789-795
    • Majumdar, A.1
  • 97
    • 40149092401 scopus 로고    scopus 로고
    • Compressed imaging system with linear sensors
    • Stern A. Compressed imaging system with linear sensors. Opt Lett 2007, 32:3077-3079.
    • (2007) Opt Lett , vol.32 , pp. 3077-3079
    • Stern, A.1
  • 100
    • 84860630873 scopus 로고    scopus 로고
    • Handling missing data in medical questionnaires using tensor decompositions. Communications and Signal Processing (ICICS) 2011 8th International Conference on Information, 1-5.
    • Dauwels J, Garg L, Earnest A, Khai Pang Leong. Handling missing data in medical questionnaires using tensor decompositions. Communications and Signal Processing (ICICS) 2011 8th International Conference on Information, 2011, 1-5.
    • (2011)
    • Dauwels, J.1    Garg, L.2    Earnest, A.3    Khai Pang, L.4
  • 101
    • 84867605726 scopus 로고    scopus 로고
    • Tensor factorization for missing data imputation in medical questionnaires. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Dauwels J, Garg L, Earnest A, Khai Pang L. Tensor factorization for missing data imputation in medical questionnaires. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, 2109-2112.
    • (2012) , pp. 2109-2112
    • Dauwels, J.1    Garg, L.2    Earnest, A.3    Khai Pang, L.4
  • 102
    • 84890458038 scopus 로고    scopus 로고
    • Low-dimensional models for missing data imputation in road networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Tayyab Asif M, Mitrovic N, Garg L, Dauwels J, Jaillet P. Low-dimensional models for missing data imputation in road networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.
    • (2013)
    • Tayyab Asif, M.1    Mitrovic, N.2    Garg, L.3    Dauwels, J.4    Jaillet, P.5
  • 104
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • Kim KI, Kwon Y. Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 2010, 32:1127-1133.
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , pp. 1127-1133
    • Kim, K.I.1    Kwon, Y.2
  • 105
    • 84885461033 scopus 로고    scopus 로고
    • Greedy regression in sparse coding space for single-image super-resolution
    • Tang Y, Yuan Y, Yan P, Li X. Greedy regression in sparse coding space for single-image super-resolution. J Vis Commun Image Represent 2013, 24:148-159.
    • (2013) J Vis Commun Image Represent , vol.24 , pp. 148-159
    • Tang, Y.1    Yuan, Y.2    Yan, P.3    Li, X.4
  • 107
    • 84886731807 scopus 로고    scopus 로고
    • A complete set of MATLAB codes is available at the author's personal webpage , which allows to reproduce the figures presented in this paper.
    • A complete set of MATLAB codes is available at the author's personal webpage http://web.fi.uba.ar/~ccaiafa/Cesar/Tensor-CS.html, which allows to reproduce the figures presented in this paper.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.