메뉴 건너뛰기




Volumn 38, Issue , 2012, Pages 27-31

A novel feature selection algorithm using particle swarm optimization for cancer microarray data

Author keywords

K nearest neighbour; Microarray; Particle swarm optimization; Probability neural network; Signal to noise ratio; Support vector machine

Indexed keywords


EID: 84886736053     PISSN: 18777058     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2012.06.005     Document Type: Conference Paper
Times cited : (112)

References (15)
  • 1
    • 17444386734 scopus 로고    scopus 로고
    • HykGene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
    • 8
    • Y. Wang, F. S. Makedon. J. C. Ford, J. Pearlman. HykGene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005; 15:21:8: 1530-1537.
    • (2005) Bioinformatics , vol.15 , Issue.21 , pp. 1530-1537
    • Wang, Y.1    Makedon, F.S.2    Ford, J.C.3    Pearlman, J.4
  • 3
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • E.R.Dougherty. Small sample issues for microarray-based classification. Comparative and Functional Genomics 2001; 2: 28-34.
    • (2001) Comparative and Functional Genomics , vol.2 , pp. 28-34
    • Dougherty, E.R.1
  • 4
    • 24044536613 scopus 로고    scopus 로고
    • Pattern recognition techniques for the emerging field of bioinformatics: A review
    • Alan Wee-Chung Liew, Hong Yan, Mengsu Yang. Pattern recognition techniques for the emerging field of bioinformatics: A review, in Proc Pattern Recognition, 2005; 38: 2055 -2073.
    • (2005) Proc Pattern Recognition , vol.38 , pp. 2055-2073
    • Liew, A.W.-C.1    Yan, H.2    Yang, M.3
  • 5
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • Ian B Jeffery. Desmond G Higgins, and Aedin C Culhane. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. Proc BMC Bioinformatics 2006: 7: 359: 1471 -2105.
    • (2006) Proc BMC Bioinformatics , vol.7 , Issue.359 , pp. 1471-2105
    • Higgins, I.B.1    Jeffery, D.G.2    Culhane, A.C.3
  • 7
    • 77958476034 scopus 로고    scopus 로고
    • Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm
    • Emmanuel Martinez, Mario Moises Alvarez, Victor Trevino, Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm, Computational Biology and Chemistry 2010: 34: 244-250.
    • (2010) Computational Biology and Chemistry , vol.34 , pp. 244-250
    • Martinez, E.1    Alvarez, M.M.2    Trevino, V.3
  • 9
    • 16244422362 scopus 로고    scopus 로고
    • Determination of Tumour marker genes from gene expression data
    • Miroslava Cuperlovic-Cuf, Nabil Belacel, Rodney j. Ouellette. Determination of tumour marker genes from gene expression data. DDT. 2005; 10: 6: 429-437.
    • (2005) DDT , vol.10 , Issue.6 , pp. 429-437
    • Cuperlovic-Cuf, M.1    Belacel, N.2    Ouellette, R.J.3
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill. and V. Vapnik, Gene selection for cancer classification using support vector machines. Machine Learning, 2002; 46: 1-3: 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, Support vector networks. Machine Learning, 1995; 20: 3: 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machines classification and validation of cancer tissue samples using microarray expression data
    • T. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer and D. Haussler. Support vector machines classification and validation of cancer tissue samples using microarray expression data, Bioinfojmatics, 2000; 16:10: 906-914.
    • (2000) Bioinfojmatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 14
    • 78650399614 scopus 로고    scopus 로고
    • Hybrid wrapper-filter approach for input feature selection using maximum Revalance and artificial neural network input gain measurement approximation
    • Shamsul Huda, John Yearwood, Andrew Stranieri. Hybrid wrapper-filter approach for input feature selection using Maximum Revalance and Artificial Neural Network Input Gain Measurement Approximation. Fourth International conference on Network and system security, 2010:442-449.
    • (2010) Fourth International Conference on Network and System Security , pp. 442-449
    • Huda, S.1    Yearwood, J.2    Stranieri, A.3
  • 15
    • 85030959997 scopus 로고    scopus 로고
    • http://sdmc.lit.org.sg/GEDatasets/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.