메뉴 건너뛰기




Volumn 19, Issue 12, 2013, Pages 2179-2188

Visual analytics for spatial clustering: Using a heuristic approach for guided exploration

Author keywords

Heuristic based spatial clustering; iInteractive visual clustering; k order a (alpha) shapes

Indexed keywords

COHERENT FRAMEWORKS; HEURISTIC APPROACH; INTERACTIVE VISUALIZATIONS; K-ORDER A-(ALPHA)-SHAPES; SPATIAL CLUSTERING; VISUAL ANALYTICS; VISUAL CLUSTERING; VISUAL FEEDBACK;

EID: 84886651495     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2013.224     Document Type: Article
Times cited : (28)

References (38)
  • 1
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. of the ACM SIGMOD, Int. Conf. Management of Data, volume 27, pages 94-105. ACM, 1998. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 7
    • 84996178668 scopus 로고    scopus 로고
    • Vista: Validating and refining clusters via visualization
    • K. Chen and L. Liu. Vista: Validating and refining clusters via visualization. Information Visualization, 3(4):257-270, 2004.
    • (2004) Information Visualization , vol.3 , Issue.4 , pp. 257-270
    • Chen, K.1    Liu, L.2
  • 8
    • 78650936017 scopus 로고    scopus 로고
    • Ivisclassifier: An interactive visual analytics system for classification based on supervised dimension reduction
    • IEEE
    • J. Choo, H. Lee, J. Kihm, and H. Park. ivisclassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on, pages 27-34. IEEE, 2010.
    • (2010) Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on , pp. 27-34
    • Choo, J.1    Lee, H.2    Kihm, J.3    Park, H.4
  • 9
    • 0023288651 scopus 로고
    • On k-hulls and related problems
    • R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIJCOMP, 16(1):61-77, 1987.
    • (1987) SIJCOMP , vol.16 , Issue.1 , pp. 61-77
    • Cole, R.1    Sharir, M.2    Yap, C.K.3
  • 12
    • 34347333289 scopus 로고    scopus 로고
    • A local-density based spatial clustering algorithm with noise
    • DOI 10.1016/j.is.2006.10.006, PII S0306437906000871
    • L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan. A local-density based spatial clustering algorithm with noise. Information Systems, 32(7):978-986, 2007. (Pubitemid 47017576)
    • (2007) Information Systems , vol.32 , Issue.7 , pp. 978-986
    • Duan, L.1    Xu, L.2    Guo, F.3    Lee, J.4    Yan, B.5
  • 16
    • 84957712272 scopus 로고
    • Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification
    • Springer
    • M. Ester, H. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. In Advances in Spatial Databases, pages 67-82. Springer, 1995.
    • (1995) Advances in Spatial Databases , pp. 67-82
    • Ester, M.1    Kriegel, H.2    Xu, X.3
  • 18
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases. In ACM SIGMOD Record, volume 27, pages 73-84. ACM, 1998. (Pubitemid 128655958)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 19
    • 16244379742 scopus 로고    scopus 로고
    • Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
    • D. Guo. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization, 2(4):232-246, 2003.
    • (2003) Information Visualization , vol.2 , Issue.4 , pp. 232-246
    • Guo, D.1
  • 21
    • 0141794290 scopus 로고    scopus 로고
    • ICEAGE: Interactive clustering and exploration of large and high-dimensional geodata
    • DOI 10.1023/A:1025101015202
    • D. Guo, D. Peuquet, and M. Gahegan. Iceage: Interactive clustering and exploration of large and high-dimensional geodata. GeoInformatica, 7(3):229-253, 2003. (Pubitemid 37212162)
    • (2003) GeoInformatica , vol.7 , Issue.3 , pp. 229-253
    • Guo, D.1    Peuquet, D.J.2    Gahegan, M.3
  • 28
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic modeling. Computer, 32(8):68-75, 1999.
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 30
    • 50949113861 scopus 로고    scopus 로고
    • Robust curve reconstruction with k-order alpha-shapes
    • Full version
    • D. N. Krasnoshchekov and V. Polishchuk. Robust curve reconstruction with k-order alpha-shapes. In Shape Modeling International, pages 279-280, 2008. Full version: http://www.cs.helsinki.fi/u/polishch/pages/koas.pdf.
    • (2008) Shape Modeling International , pp. 279-280
    • Krasnoshchekov, D.N.1    Polishchuk, V.2
  • 31
    • 8844244687 scopus 로고    scopus 로고
    • A-shapes for visualizing irregular-shaped class clusters in 3d feature space for classification of remotely sensed imagery
    • A. Lucieer and M.-J. Kraak. a-shapes for visualizing irregular-shaped class clusters in 3d feature space for classification of remotely sensed imagery. Proc. SPIE 5295, Visualization and Data Analysis, 16, 2004.
    • (2004) Proc. SPIE 5295 Visualization and Data Analysis , vol.16
    • Lucieer, A.1    Kraak, M.-J.2
  • 33
    • 78651343830 scopus 로고    scopus 로고
    • A heuristic alpha-shape based clustering method for ranked radial pattern data
    • L. Mu and R. Liu. A heuristic alpha-shape based clustering method for ranked radial pattern data. pages 621-630. Applied Geography, Vol. 31, No. 2., 2011.
    • (2011) Applied Geography , vol.31 , Issue.2 , pp. 621-630
    • Mu, L.1    Liu, R.2
  • 35
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm gdbscan and its applications
    • J. Sander, M. Ester, H. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery, 2(2):169-194, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.3    Xu, X.4
  • 36
    • 0002663098 scopus 로고
    • SLINK: An optimally efficient algorithm for the single-link cluster method
    • R. Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16(1):30-34, 1973.
    • (1973) The Computer Journal , vol.16 , Issue.1 , pp. 30-34
    • Sibson, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.