-
2
-
-
0043253421
-
Groups with many subgroups having a transitive normality relation
-
De Falco M., de Giovanni F.: Groups with many subgroups having a transitive normality relation. Bol. Soc. Brasil. Mat. 31, 73-80 (2000).
-
(2000)
Bol. Soc. Brasil. Mat.
, vol.31
, pp. 73-80
-
-
de Falco, M.1
de Giovanni, F.2
-
4
-
-
84886640454
-
-
Glasgow Math. J., to appear
-
M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak, Groups of infinite rank in which normality is a transitive relation, Glasgow Math. J., to appear.
-
Groups of infinite rank in which normality is a transitive relation
-
-
de Falco, M.1
de Giovanni, F.2
Musella, C.3
Sysak, Y.P.4
-
5
-
-
84902329721
-
-
Rev. Mat. Iberoamericana, to appear
-
M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Groups with restrictions on subgroups of infinite rank, Rev. Mat. Iberoamericana, to appear.
-
Groups with restrictions on subgroups of infinite rank
-
-
de Falco, M.1
de Giovanni, F.2
Musella, C.3
Trabelsi, N.4
-
6
-
-
84878457669
-
-
Bull. Austral. Math. Soc., to appear
-
M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Groups whose proper subgroups of infinite rank have finite conjugacy classes, Bull. Austral. Math. Soc., to appear.
-
Groups whose proper subgroups of infinite rank have finite conjugacy classes
-
-
de Falco, M.1
de Giovanni, F.2
Musella, C.3
Trabelsi, N.4
-
7
-
-
0030585630
-
Locally soluble-by-finite groups of finite rank
-
Dixon M. R., Evans M. J., Smith H.: Locally soluble-by-finite groups of finite rank. J. Algebra 182, 756-769 (1996).
-
(1996)
J. Algebra
, vol.182
, pp. 756-769
-
-
Dixon, M.R.1
Evans, M.J.2
Smith, H.3
-
8
-
-
0033521767
-
Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank
-
Dixon M. R., Evans M. J., Smith H.: Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank. J. Pure Appl. Algebra 135, 33-43 (1999).
-
(1999)
J. Pure Appl. Algebra
, vol.135
, pp. 33-43
-
-
Dixon, M.R.1
Evans, M.J.2
Smith, H.3
-
9
-
-
0033243260
-
Groups with all proper subgroups (finite rank)-by-nilpotent
-
Dixon M. R., Evans M. J., Smith H.: Groups with all proper subgroups (finite rank)-by-nilpotent. Arch. Math. (Basel) 72, 321-327 (1999).
-
(1999)
Arch. Math. (Basel)
, vol.72
, pp. 321-327
-
-
Dixon, M.R.1
Evans, M.J.2
Smith, H.3
-
10
-
-
84859158061
-
Groups with all subgroups permutable or of finite rank
-
Dixon M. R., Karatas Z. Y.: Groups with all subgroups permutable or of finite rank. Centr. Eur. J. Math. 10, 950-957 (2012).
-
(2012)
Centr. Eur. J. Math.
, vol.10
, pp. 950-957
-
-
Dixon, M.R.1
Karatas, Z.Y.2
-
11
-
-
22744435460
-
On groups in which every subgroup of infinite rank is subnormal of bounded defect
-
Evans M. J., Kim Y.: On groups in which every subgroup of infinite rank is subnormal of bounded defect. Comm. Algebra 32, 2547-2557 (2004).
-
(2004)
Comm. Algebra
, vol.32
, pp. 2547-2557
-
-
Evans, M.J.1
Kim, Y.2
-
12
-
-
0002457074
-
Gruppen in denen das Normalteilersein transitiv ist
-
Gaschütz W.: Gruppen in denen das Normalteilersein transitiv ist. J. Reine Angew. Math. 198, 87-92 (1957).
-
(1957)
J. Reine Angew. Math.
, vol.198
, pp. 87-92
-
-
Gaschütz, W.1
-
13
-
-
0012070865
-
Groups in which normality is a transitive relation
-
Robinson D. J. S.: Groups in which normality is a transitive relation. Proc. Cambridge Philos. Soc. 68, 21-38 (1964).
-
(1964)
Proc. Cambridge Philos. Soc.
, vol.68
, pp. 21-38
-
-
Robinson, D.J.S.1
-
14
-
-
84972544011
-
Groups which are minimal with respect to normality being intransitive
-
Robinson D. J. S.: Groups which are minimal with respect to normality being intransitive. Pacific J. Math. 31, 777-785 (1969).
-
(1969)
Pacific J. Math.
, vol.31
, pp. 777-785
-
-
Robinson, D.J.S.1
-
16
-
-
0039481469
-
Splitting theorems for infinite groups
-
Robinson D. J. S.: Splitting theorems for infinite groups. Symposia Mathematica 17, 441-470 (1973).
-
(1973)
Symposia Mathematica
, vol.17
, pp. 441-470
-
-
Robinson, D.J.S.1
|