메뉴 건너뛰기




Volumn 10, Issue 4, 2013, Pages 1999-2006

Groups whose Proper Subgroups of Infinite Rank Have a Transitive Normality Relation

Author keywords

infinite rank; subnormal subgroup; T group

Indexed keywords


EID: 84886639842     PISSN: 16605446     EISSN: 16605454     Source Type: Journal    
DOI: 10.1007/s00009-013-0321-x     Document Type: Article
Times cited : (15)

References (17)
  • 2
    • 0043253421 scopus 로고    scopus 로고
    • Groups with many subgroups having a transitive normality relation
    • De Falco M., de Giovanni F.: Groups with many subgroups having a transitive normality relation. Bol. Soc. Brasil. Mat. 31, 73-80 (2000).
    • (2000) Bol. Soc. Brasil. Mat. , vol.31 , pp. 73-80
    • de Falco, M.1    de Giovanni, F.2
  • 7
    • 0030585630 scopus 로고    scopus 로고
    • Locally soluble-by-finite groups of finite rank
    • Dixon M. R., Evans M. J., Smith H.: Locally soluble-by-finite groups of finite rank. J. Algebra 182, 756-769 (1996).
    • (1996) J. Algebra , vol.182 , pp. 756-769
    • Dixon, M.R.1    Evans, M.J.2    Smith, H.3
  • 8
    • 0033521767 scopus 로고    scopus 로고
    • Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank
    • Dixon M. R., Evans M. J., Smith H.: Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank. J. Pure Appl. Algebra 135, 33-43 (1999).
    • (1999) J. Pure Appl. Algebra , vol.135 , pp. 33-43
    • Dixon, M.R.1    Evans, M.J.2    Smith, H.3
  • 9
    • 0033243260 scopus 로고    scopus 로고
    • Groups with all proper subgroups (finite rank)-by-nilpotent
    • Dixon M. R., Evans M. J., Smith H.: Groups with all proper subgroups (finite rank)-by-nilpotent. Arch. Math. (Basel) 72, 321-327 (1999).
    • (1999) Arch. Math. (Basel) , vol.72 , pp. 321-327
    • Dixon, M.R.1    Evans, M.J.2    Smith, H.3
  • 10
    • 84859158061 scopus 로고    scopus 로고
    • Groups with all subgroups permutable or of finite rank
    • Dixon M. R., Karatas Z. Y.: Groups with all subgroups permutable or of finite rank. Centr. Eur. J. Math. 10, 950-957 (2012).
    • (2012) Centr. Eur. J. Math. , vol.10 , pp. 950-957
    • Dixon, M.R.1    Karatas, Z.Y.2
  • 11
    • 22744435460 scopus 로고    scopus 로고
    • On groups in which every subgroup of infinite rank is subnormal of bounded defect
    • Evans M. J., Kim Y.: On groups in which every subgroup of infinite rank is subnormal of bounded defect. Comm. Algebra 32, 2547-2557 (2004).
    • (2004) Comm. Algebra , vol.32 , pp. 2547-2557
    • Evans, M.J.1    Kim, Y.2
  • 12
    • 0002457074 scopus 로고
    • Gruppen in denen das Normalteilersein transitiv ist
    • Gaschütz W.: Gruppen in denen das Normalteilersein transitiv ist. J. Reine Angew. Math. 198, 87-92 (1957).
    • (1957) J. Reine Angew. Math. , vol.198 , pp. 87-92
    • Gaschütz, W.1
  • 13
    • 0012070865 scopus 로고
    • Groups in which normality is a transitive relation
    • Robinson D. J. S.: Groups in which normality is a transitive relation. Proc. Cambridge Philos. Soc. 68, 21-38 (1964).
    • (1964) Proc. Cambridge Philos. Soc. , vol.68 , pp. 21-38
    • Robinson, D.J.S.1
  • 14
    • 84972544011 scopus 로고
    • Groups which are minimal with respect to normality being intransitive
    • Robinson D. J. S.: Groups which are minimal with respect to normality being intransitive. Pacific J. Math. 31, 777-785 (1969).
    • (1969) Pacific J. Math. , vol.31 , pp. 777-785
    • Robinson, D.J.S.1
  • 16
    • 0039481469 scopus 로고
    • Splitting theorems for infinite groups
    • Robinson D. J. S.: Splitting theorems for infinite groups. Symposia Mathematica 17, 441-470 (1973).
    • (1973) Symposia Mathematica , vol.17 , pp. 441-470
    • Robinson, D.J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.