-
1
-
-
84972533564
-
Radical groups with finite abelian subgroup rank
-
Baer, R., Heineken, H. (1972). Radical groups with finite abelian subgroup rank. Illinois J. Math. 16:533-580.
-
(1972)
Illinois J. Math.
, vol.16
, pp. 533-580
-
-
Baer, R.1
Heineken, H.2
-
2
-
-
0000625731
-
A theorem on groups of finite special rank
-
Černikov, N. S. (1990). A theorem on groups of finite special rank. Ukrain. Mat. Zh. 42:962-970, English transl. in
-
(1990)
Ukrain. Mat. Zh.
, vol.42
, pp. 962-970
-
-
Černikov, N.S.1
-
3
-
-
0000104994
-
-
Ukrainian Math. J. 42 (1990), 855-861.
-
(1990)
Ukrainian Math. J.
, vol.42
, pp. 855-861
-
-
-
4
-
-
0030585630
-
Locally (soluble-by-finite) groups of finite rank
-
Dixon, M. R., Evans, M. J., Smith, H. (1996). Locally (soluble-by-finite) groups of finite rank. J. Algebra 182:756-769.
-
(1996)
J. Algebra
, vol.182
, pp. 756-769
-
-
Dixon, M.R.1
Evans, M.J.2
Smith, H.3
-
5
-
-
0033521767
-
Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank
-
Dixon, M. R., Evans, M. J., Smith, H. (1999). Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank. J. Pure Appl. Algebra 135:33-44.
-
(1999)
J. Pure Appl. Algebra
, vol.135
, pp. 33-44
-
-
Dixon, M.R.1
Evans, M.J.2
Smith, H.3
-
6
-
-
0000022304
-
A group with trivial centre satisfying the normalizer condition
-
Heineken, H., Mohamed, I. J. (1968). A group with trivial centre satisfying the normalizer condition. J. Algebra 10:368-376.
-
(1968)
J. Algebra
, vol.10
, pp. 368-376
-
-
Heineken, H.1
Mohamed, I.J.2
-
8
-
-
84972500514
-
Injective modules over Noetherian rings
-
Matlis, E. (1958). Injective modules over Noetherian rings. Pacific J. Math. 8: 511-528.
-
(1958)
Pacific J. Math.
, vol.8
, pp. 511-528
-
-
Matlis, E.1
-
10
-
-
0013514675
-
Groups of Heineken-mohamed
-
Menegazzo, F. (1995). Groups of Heineken-Mohamed. J. Algebra 171(3):807-825.
-
(1995)
J. Algebra
, vol.171
, Issue.3
, pp. 807-825
-
-
Menegazzo, F.1
-
11
-
-
0001278533
-
Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind
-
Möhres, W. (1990). Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind. Arch. Math. 54:232-235.
-
(1990)
Arch. Math.
, vol.54
, pp. 232-235
-
-
Möhres, W.1
-
13
-
-
4244000474
-
-
Berlin/Heidelberg/New York: Springer-Verlag
-
Ergeb. Math. Grenzgeb., Band 62 and 63. Berlin/Heidelberg/New York: Springer-Verlag.
-
Ergeb. Math. Grenzgeb.
, vol.62-63
-
-
-
14
-
-
0003357759
-
A Course in the Theory of Groups
-
Berlin-Heidelburg-New York: Springer-Verlag
-
Robinson, D. J. S. (1982). A Course in the Theory of Groups. Graduate Texts in Math, 80. Berlin-Heidelburg-New York: Springer-Verlag.
-
(1982)
Graduate Texts in Math
, pp. 80
-
-
Robinson, D.J.S.1
-
15
-
-
0001281084
-
On groups in which every subgroup is subnormal
-
Roseblade, J. E. (1965). On groups in which every subgroup is subnormal. J. Algebra 2:402-412.
-
(1965)
J. Algebra
, vol.2
, pp. 402-412
-
-
Roseblade, J.E.1
-
17
-
-
0035530685
-
Torsion-free groups with all subgroups subnormal
-
Smith, H. (2001). Torsion-free groups with all subgroups subnormal. Arch. Math. 76:1-6.
-
(2001)
Arch. Math.
, vol.76
, pp. 1-6
-
-
Smith, H.1
|