메뉴 건너뛰기




Volumn 195, Issue 21, 2013, Pages 4900-4914

Flexibility of syntrophic enzyme systems in desulfovibrio species ensures their adaptation capability to environmental changes

Author keywords

[No Author keywords available]

Indexed keywords

CYTOCHROME C3; MENAQUINONE; OXIDOREDUCTASE; PYRUVIC ACID; QUINONE DERIVATIVE;

EID: 84885993468     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.00504-13     Document Type: Article
Times cited : (32)

References (87)
  • 2
    • 84886004151 scopus 로고    scopus 로고
    • Syntrophism among prokaryotes, p 309- 335. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E
    • (ed), The prokaryotes, 2nd ed.Springer-Verlag, Heidelberg, Germany.
    • Schink B, Stams AJM. 2006. Syntrophism among prokaryotes, p 309- 335. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (ed), The prokaryotes, 2nd ed, vol 2. Springer-Verlag, Heidelberg, Germany.
    • (2006) , vol.2
    • Schink, B.1    Stams, A.J.M.2
  • 3
    • 67651202726 scopus 로고    scopus 로고
    • Electron transfer in syntrophic communities of anaerobic bacteria and archaea
    • Stams AJM, Plugge CM. 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7:568-577.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 568-577
    • Stams, A.J.M.1    Plugge, C.M.2
  • 5
    • 78649756861 scopus 로고    scopus 로고
    • Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms
    • Müller N, Worm P, Schink B, Stams AJM, Plugge CM. 2010. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ. Microbiol. Rep. 2:489-499.
    • (2010) Environ. Microbiol. Rep. , vol.2 , pp. 489-499
    • Müller, N.1    Worm, P.2    Schink, B.3    Stams, A.J.M.4    Plugge, C.M.5
  • 6
    • 0000309175 scopus 로고
    • Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake
    • Boone DR, Johnson Liu Y. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735-1741.
    • (1989) Appl. Environ. Microbiol. , vol.55 , pp. 1735-1741
    • Boone, D.R.1    Johnson Liu, Y.2
  • 7
    • 0002865158 scopus 로고
    • Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs
    • Thiele JH, Zeikus JG. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54:20-29.
    • (1988) Appl. Environ. Microbiol. , vol.54 , pp. 20-29
    • Thiele, J.H.1    Zeikus, J.G.2
  • 8
    • 0029562475 scopus 로고
    • Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria
    • Stams AJM, Dong X. 1995. Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 68:281-284.
    • (1995) Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. , vol.68 , pp. 281-284
    • Stams, A.J.M.1    Dong, X.2
  • 9
    • 78650720286 scopus 로고    scopus 로고
    • Growth- and substrate- dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei
    • Worm P, Stams AJM, Cheng X, Plugge CM. 2011. Growth- and substrate- dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157:280-289.
    • (2011) Microbiology , vol.157 , pp. 280-289
    • Worm, P.1    Stams, A.J.M.2    Cheng, X.3    Plugge, C.M.4
  • 10
    • 0036731743 scopus 로고    scopus 로고
    • Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei
    • de Bok FAM, Luijten MLGC, Stams AJM. 2002. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl. Environ. Microbiol. 68:4247-4252.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 4247-4252
    • de Bok, F.A.M.1    Luijten, M.L.G.C.2    Stams, A.J.M.3
  • 11
    • 0003375678 scopus 로고
    • Energetics of syntrophic methane formation and the influence of aggregation
    • Pudoc, Wageningen, Netherlands.
    • Schink B, Thauer RK. 1988. Energetics of syntrophic methane formation and the influence of aggregation. Pudoc, Wageningen, Netherlands.
    • (1988)
    • Schink, B.1    Thauer, R.K.2
  • 12
    • 33746088435 scopus 로고    scopus 로고
    • Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia
    • Ishii S, Kosaka T, Hotta Y, Watanabe K. 2006. Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl. Environ. Microbiol. 72:5093-5096.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 5093-5096
    • Ishii, S.1    Kosaka, T.2    Hotta, Y.3    Watanabe, K.4
  • 13
    • 29144460324 scopus 로고    scopus 로고
    • Coaggregation faciliates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus
    • Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K. 2005. Coaggregation faciliates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl. Environ. Microbiol. 71:7838-7845.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 7838-7845
    • Ishii, S.1    Kosaka, T.2    Hori, K.3    Hotta, Y.4    Watanabe, K.5
  • 15
    • 84873534989 scopus 로고    scopus 로고
    • Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth
    • Meyer B, Kuehl J, Deutschbauer AM, Price MN, Arkin AP, Stahl DA. 2013. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. J. Bacteriol. 195:990-1004.
    • (2013) J. Bacteriol. , vol.195 , pp. 990-1004
    • Meyer, B.1    Kuehl, J.2    Deutschbauer, A.M.3    Price, M.N.4    Arkin, A.P.5    Stahl, D.A.6
  • 17
    • 77954940178 scopus 로고    scopus 로고
    • The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration
    • Venceslau SS, Lino RR, Pereira IAC. 2010. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J. Biol. Chem. 285:22774-22783.
    • (2010) J. Biol. Chem. , vol.285 , pp. 22774-22783
    • Venceslau, S.S.1    Lino, R.R.2    Pereira, I.A.C.3
  • 18
    • 0021913869 scopus 로고
    • Dependence of the specific growth rate of the methanogenic mutualistic cocultures on the methanogen
    • Archer DB, Powell GE. 1985. Dependence of the specific growth rate of the methanogenic mutualistic cocultures on the methanogen. Arch. Microbiol. 141:133-137.
    • (1985) Arch. Microbiol. , vol.141 , pp. 133-137
    • Archer, D.B.1    Powell, G.E.2
  • 19
    • 33846938986 scopus 로고    scopus 로고
    • Coupling of Methanothermobacter thermoautotrophicus methane formation and growth in fedbatch and continuous cultures under different H2 gassing regiments
    • de Porter LMI, Geerts WJ, Keltjens JT. 2007. Coupling of Methanothermobacter thermoautotrophicus methane formation and growth in fedbatch and continuous cultures under different H2 gassing regiments. Appl. Environ. Microbiol. 73:740-749.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 740-749
    • de Porter, L.M.I.1    Geerts, W.J.2    Keltjens, J.T.3
  • 20
    • 0018934161 scopus 로고
    • Growth parameters (KS, max, YS) of Methanobacterium thermoautotrophicum
    • Schönheit P, Moll J, Thauer RK. 1980. Growth parameters (KS, max, YS) of Methanobacterium thermoautotrophicum. Arch. Microbiol. 127:59-65.
    • (1980) Arch. Microbiol. , vol.127 , pp. 59-65
    • Schönheit, P.1    Moll, J.2    Thauer, R.K.3
  • 23
    • 79955498366 scopus 로고    scopus 로고
    • Methanogenesis, In Timmis KN (ed)
    • Springer-Verlag, Heidelberg, Germany
    • Rother M. 2010. Methanogenesis, p 483-499. In Timmis KN (ed), Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Heidelberg, Germany.
    • (2010) Handbook of hydrocarbon and lipid microbiology , pp. 483-499
    • Rother, M.1
  • 24
    • 41349114723 scopus 로고    scopus 로고
    • Physiology and biochemistry of the methane-producing archaea, 2nd ed
    • Springer-Verlag, Heidelberg, Germany
    • Hedderich R, Whitman WB. 2006. Physiology and biochemistry of the methane-producing archaea, 2nd ed. Springer-Verlag, Heidelberg, Germany.
    • (2006)
    • Hedderich, R.1    Whitman, W.B.2
  • 25
    • 80053439340 scopus 로고    scopus 로고
    • Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate
    • Li X, McInerney MJ, Stahl DA, Krumholz LR. 2011. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate. Microbiology 157:2912-2921.
    • (2011) Microbiology , vol.157 , pp. 2912-2921
    • Li, X.1    McInerney, M.J.2    Stahl, D.A.3    Krumholz, L.R.4
  • 27
    • 77956385965 scopus 로고    scopus 로고
    • Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism
    • Plugge CM, Scholten JCM, Culley DE, Nie L, Brockman FJ, Zhang W. 2010. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Microbiology 156:2746-2756.
    • (2010) Microbiology , vol.156 , pp. 2746-2756
    • Plugge, C.M.1    Scholten, J.C.M.2    Culley, D.E.3    Nie, L.4    Brockman, F.J.5    Zhang, W.6
  • 30
    • 0016270265 scopus 로고
    • Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei sp
    • Ferry JG, Smith PH, Wolfe RS. 1974. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei sp. nov. Int. J. Syst. Bacteriol. 24:465-469.
    • (1974) nov. Int. J. Syst. Bacteriol. , vol.24 , pp. 465-469
    • Ferry, J.G.1    Smith, P.H.2    Wolfe, R.S.3
  • 31
    • 78649268369 scopus 로고    scopus 로고
    • Methanospirillum lacunae sp nov., a methane-producing archaeon isolated from puddy soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei.
    • Iino T, Mori K, Suzuki KI. 2010. Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from puddy soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 60:2563-2566.
    • (2010) Int. J. Syst. Evol. Microbiol. , vol.60 , pp. 2563-2566
    • Iino, T.1    Mori, K.2    Suzuki, K.I.3
  • 32
    • 84886004073 scopus 로고
    • Gram-negative mesophilic sulfate-reducing bacteria, p 3352-3378. In Balows A, Tr̈uper HG, Dworkin M, Harder W, Schleifer K-H
    • (ed), The prokaryotes, 2nd ed Springer Verlag, New York, NY
    • Widdel F, Bak F. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p 3352-3378. In Balows A, Tr̈uper HG, Dworkin M, Harder W, Schleifer K-H (ed), The prokaryotes, 2nd ed, vol 4. Springer Verlag, New York, NY.
    • (1992) , vol.4
    • Widdel, F.1    Bak, F.2
  • 34
    • 33644847674 scopus 로고    scopus 로고
    • OpWise: operons aid the identification of differentially expressed genes in bacterial microarray experiments
    • Price MN, Arkin AP, Alm EJ. 2006. OpWise: operons aid the identification of differentially expressed genes in bacterial microarray experiments. BMC Bioinform. 13:7-19.
    • (2006) BMC Bioinform. , vol.13 , pp. 7-19
    • Price, M.N.1    Arkin, A.P.2    Alm, E.J.3
  • 36
    • 22544432327 scopus 로고    scopus 로고
    • Reconstruction of regulatory and metabolic pathways in metal-reducing Deltaproteobacteria
    • Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS. 2004. Reconstruction of regulatory and metabolic pathways in metal-reducing Deltaproteobacteria. Genome Biol. 5:R90.
    • (2004) Genome Biol. , vol.5
    • Rodionov, D.A.1    Dubchak, I.2    Arkin, A.3    Alm, E.4    Gelfand, M.S.5
  • 38
    • 84855895253 scopus 로고    scopus 로고
    • Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio
    • Article 135
    • Keller KL, Wall JD. 2011. Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front. Microbiol. 2:Article 135.
    • (2011) Front. Microbiol. , vol.2
    • Keller, K.L.1    Wall, J.D.2
  • 39
    • 79960354818 scopus 로고    scopus 로고
    • A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front
    • Microbiol. 2: Article 69.
    • Pereira IAC, Ramos AR, Grein F, Marques MC, Marques da Silva S, Venceslau SS. 2011. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front. Microbiol. 2: Article 69.
    • (2011)
    • Pereira, I.A.C.1    Ramos, A.R.2    Grein, F.3    Marques, M.C.4    Marques da Silva, S.5    Venceslau, S.S.6
  • 41
    • 0030986002 scopus 로고    scopus 로고
    • Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp
    • Keon RG, Fu RD, Voordouw G. 1997. Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch. Microbiol. 167:376-383.
    • (1997) vulgaris Hildenborough. Arch. Microbiol. , vol.167 , pp. 376-383
    • Keon, R.G.1    Fu, R.D.2    Voordouw, G.3
  • 42
    • 0025980680 scopus 로고
    • Molecular and functional characterization of a carbon starvation gene of Escherichia coli
    • Schultz JE, Matin A. 1991. Molecular and functional characterization of a carbon starvation gene of Escherichia coli. J. Mol. Biol. 218:129-140.
    • (1991) J. Mol. Biol. , vol.218 , pp. 129-140
    • Schultz, J.E.1    Matin, A.2
  • 43
    • 0025978756 scopus 로고
    • The molecular basis of carbon-starvation-induced general resistance in Escherichia coli
    • Matin A. 1991. The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol. Microbiol. 5:3-10.
    • (1991) Mol. Microbiol. , vol.5 , pp. 3-10
    • Matin, A.1
  • 45
    • 0032492852 scopus 로고    scopus 로고
    • Receptor clustering as a cellular mechanism to control sensitivity
    • Bray D, Levin MD, Morton-Firth CJ. 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85-88.
    • (1998) Nature , vol.393 , pp. 85-88
    • Bray, D.1    Levin, M.D.2    Morton-Firth, C.J.3
  • 48
    • 0039837140 scopus 로고
    • Equalisation of specific growth rates for syntrophic associations in batch culture
    • Powell GE. 1984. Equalisation of specific growth rates for syntrophic associations in batch culture. J. Chem. Technol. Biotechnol. 34B:97-100.
    • (1984) J. Chem. Technol. Biotechnol. , vol.34 B , pp. 97-100
    • Powell, G.E.1
  • 49
    • 0022035096 scopus 로고
    • Stable coexistence of syntrophic associations in continuous culture
    • Powell GE. 1985. Stable coexistence of syntrophic associations in continuous culture. J. Chem. Technol. Biotechnol. 35B:46-50.
    • (1985) J. Chem. Technol. Biotechnol. , vol.35 B , pp. 46-50
    • Powell, G.E.1
  • 50
    • 0345563559 scopus 로고
    • A mathematical model of syntrophic cocultures in the chemostat
    • Kreikenbohm R, Bohl E. 1986. A mathematical model of syntrophic cocultures in the chemostat. FEMS Microbiol. Ecol. 38:131-140.
    • (1986) FEMS Microbiol. Ecol. , vol.38 , pp. 131-140
    • Kreikenbohm, R.1    Bohl, E.2
  • 51
    • 0030012459 scopus 로고    scopus 로고
    • Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication for methane production
    • Xu W, Mulhern PJ, Blackford BL, Jericho MH, Firtel M, Beveridge TJ. 1996. Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication for methane production. J. Bacteriol. 178:3106-3112.
    • (1996) J. Bacteriol. , vol.178 , pp. 3106-3112
    • Xu, W.1    Mulhern, P.J.2    Blackford, B.L.3    Jericho, M.H.4    Firtel, M.5    Beveridge, T.J.6
  • 52
    • 0026070786 scopus 로고
    • Ultrastructure, inferred porosity, and Gram staining character of Methanospirillum hungatei filament termini describe unique cell permeability of this archaeobacterium
    • Beveridge TJ, Sprott GD, Whippey P. 1991. Ultrastructure, inferred porosity, and Gram staining character of Methanospirillum hungatei filament termini describe unique cell permeability of this archaeobacterium. J. Bacteriol. 173:130-140.
    • (1991) J. Bacteriol. , vol.173 , pp. 130-140
    • Beveridge, T.J.1    Sprott, G.D.2    Whippey, P.3
  • 54
    • 79955002680 scopus 로고    scopus 로고
    • Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces
    • Jarrell KF, Stark M, Nair DB, Chong JPJ. 2011. Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces. FEMS Microbiol. Lett. 319:44-50.
    • (2011) FEMS Microbiol. Lett. , vol.319 , pp. 44-50
    • Jarrell, K.F.1    Stark, M.2    Nair, D.B.3    Chong, J.P.J.4
  • 55
    • 0020503241 scopus 로고
    • Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance
    • Ekiel I, Smith ICP, Sprott GD. 1983. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J. Bacteriol. 156:316-326.
    • (1983) J. Bacteriol. , vol.156 , pp. 316-326
    • Ekiel, I.1    Smith, I.C.P.2    Sprott, G.D.3
  • 57
    • 79952588675 scopus 로고    scopus 로고
    • Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
    • Kaster AK, Moll J, Parey K, Thauer RK. 2011. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl. Acad. Sci. U. S. A. 108: 2981-2986.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 2981-2986
    • Kaster, A.K.1    Moll, J.2    Parey, K.3    Thauer, R.K.4
  • 59
    • 84866550896 scopus 로고    scopus 로고
    • Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis
    • Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA. 2012. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc. Natl. Acad. Sci. U. S. A. 109: 15473-15478.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 15473-15478
    • Lie, T.J.1    Costa, K.C.2    Lupa, B.3    Korpole, S.4    Whitman, W.B.5    Leigh, J.A.6
  • 61
    • 0021346339 scopus 로고
    • Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions
    • Robinson JA, Tiedje JM. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26-32.
    • (1984) Arch. Microbiol. , vol.137 , pp. 26-32
    • Robinson, J.A.1    Tiedje, J.M.2
  • 62
    • 0019963764 scopus 로고
    • Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei
    • Schauer NL, Brown DP, Ferry JG. 1982. Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei. Appl. Environ. Microbiol. 44:549-554.
    • (1982) Appl. Environ. Microbiol. , vol.44 , pp. 549-554
    • Schauer, N.L.1    Brown, D.P.2    Ferry, J.G.3
  • 64
    • 0021144754 scopus 로고
    • Physiological basis for sulfate-dependent hydrogen competition between sulfidogens and methanogens
    • Lupton FS, Zeikus JG. 1984. Physiological basis for sulfate-dependent hydrogen competition between sulfidogens and methanogens. Curr. Microbiol. 11:7-12.
    • (1984) Curr. Microbiol. , vol.11 , pp. 7-12
    • Lupton, F.S.1    Zeikus, J.G.2
  • 65
    • 0008477416 scopus 로고
    • Determination of the Monod substrate sat-uration constant for microbial growth
    • Owens JD, Legan JD. 1987. Determination of the Monod substrate sat-uration constant for microbial growth. FEMS Microbiol. Rev. 46:419- 432.
    • (1987) FEMS Microbiol. Rev. , vol.46
    • Owens, J.D.1    Legan, J.D.2
  • 66
    • 85047695985 scopus 로고    scopus 로고
    • Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea
    • Mander GJ, Duin EC, Linder D, Stetter KO, Hedderich R. 2002. Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur. J. Biochem. 269: 1895-1904.
    • (2002) Eur. J. Biochem. , vol.269 , pp. 1895-1904
    • Mander, G.J.1    Duin, E.C.2    Linder, D.3    Stetter, K.O.4    Hedderich, R.5
  • 67
    • 30344465022 scopus 로고    scopus 로고
    • Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex: a membrane-bound redox complex involved in the sulfate respiratory pathway
    • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC. 2006. Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex: a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249-262.
    • (2006) Biochemistry , vol.45 , pp. 249-262
    • Pires, R.H.1    Venceslau, S.S.2    Morais, F.3    Teixeira, M.4    Xavier, A.V.5    Pereira, I.A.C.6
  • 68
    • 84871714638 scopus 로고    scopus 로고
    • Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism
    • Grein F, Ramos AR, Venceslau SS, Pereira IAC. 2013. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochim. Biophys. Acta 1827:145-160.
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 145-160
    • Grein, F.1    Ramos, A.R.2    Venceslau, S.S.3    Pereira, I.A.C.4
  • 69
    • 0027323851 scopus 로고
    • The hmc operon of Desulfovibrio vulgaris subsp vulgaris Hildenborough encodes a potential transmembrane redox protein complex.
    • Rossi M, Pollock WBR, Reij MW, Keon RG, Fu RD, Voordouw G. 1993. The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J. Bacteriol. 175:4699-4711.
    • (1993) J. Bacteriol. , vol.175 , pp. 4699-4711
    • Rossi, M.1    Pollock, W.B.R.2    Reij, M.W.3    Keon, R.G.4    Fu, R.D.5    Voordouw, G.6
  • 70
    • 0031756314 scopus 로고    scopus 로고
    • Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio spp
    • Pereira IAC, Romao CV, Xavier AV, LeGall J, Teixeira M. 1998. Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio spp. J. Biol. Inorg. Chem. 3:494-498.
    • (1998) J. Biol. Inorg. Chem. , vol.3 , pp. 494-498
    • Pereira, I.A.C.1    Romao, C.V.2    Xavier, A.V.3    LeGall, J.4    Teixeira, M.5
  • 71
    • 0033851906 scopus 로고    scopus 로고
    • Deletion of the hmc operon of Desulfovibrio vulgaris subsp.vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment.
    • Dolla A, Pohorelic BKJ, Voordouw JK, Voordouw G. 2000. Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch. Microbiol. 174:143-151.
    • (2000) Arch. Microbiol. , vol.174 , pp. 143-151
    • Dolla, A.1    Pohorelic, B.K.J.2    Voordouw, J.K.3    Voordouw, G.4
  • 72
    • 34548513979 scopus 로고    scopus 로고
    • Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough
    • Caffrey SM, Park H-S, Voordouw JK, He Z, Zhou J, Voordouw G. 2007. Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 189:6159-6167.
    • (2007) J. Bacteriol. , vol.189 , pp. 6159-6167
    • Caffrey, S.M.1    Park, H.-S.2    Voordouw, J.K.3    He, Z.4    Zhou, J.5    Voordouw, G.6
  • 74
    • 27644456292 scopus 로고    scopus 로고
    • Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster
    • Hedderich R, Hamann N, Bennati M. 2005. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol. Chem. 386:961-970.
    • (2005) Biol. Chem. , vol.386 , pp. 961-970
    • Hedderich, R.1    Hamann, N.2    Bennati, M.3
  • 75
    • 0036837968 scopus 로고    scopus 로고
    • Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough
    • Voordouw G. 2002. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol. Virol. 184:5903-5911.
    • (2002) J. Bacteriol. Virol. , vol.184 , pp. 5903-5911
    • Voordouw, G.1
  • 76
    • 0032311128 scopus 로고    scopus 로고
    • Maintenance energy requirement: what is required for stasis survival of Escherichia coli
    • Nyström T, Gustavsson N. 1998. Maintenance energy requirement: what is required for stasis survival of Escherichia coli. Biochim. Biophys. Acta 1365:225-231.
    • (1998) Biochim. Biophys. Acta , vol.1365 , pp. 225-231
    • Nyström, T.1    Gustavsson, N.2
  • 78
    • 84862703013 scopus 로고    scopus 로고
    • Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774
    • da Silva SM, Pacheco I, Pereira IAC. 2012. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774. J. Biol. Inorg. Chem. 17:831-838.
    • (2012) J. Biol. Inorg. Chem. , vol.17 , pp. 831-838
    • da Silva, S.M.1    Pacheco, I.2    Pereira, I.A.C.3
  • 79
    • 33646260195 scopus 로고    scopus 로고
    • Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough
    • Valente FMA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC. 2006. Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 188: 3228-3235.
    • (2006) J. Bacteriol. , vol.188 , pp. 3228-3235
    • Valente, F.M.A.1    Almeida, C.C.2    Pacheco, I.3    Carita, J.4    Saraiva, L.M.5    Pereira, I.A.C.6
  • 80
    • 0036174874 scopus 로고    scopus 로고
    • Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism
    • Pohorelic BKJ, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G. 2002. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J. Bacteriol. 184:679-686.
    • (2002) J. Bacteriol. , vol.184 , pp. 679-686
    • Pohorelic, B.K.J.1    Voordouw, J.K.2    Lojou, E.3    Dolla, A.4    Harder, J.5    Voordouw, G.6
  • 82
    • 79960360739 scopus 로고    scopus 로고
    • EPR characterization of the new Qrc complex from sulfate reducing bacteria and its ability to form a supercomplex with hydrogenase and TpIc3
    • Venceslau SS, Matos D, Pereira IAC. 2011. EPR characterization of the new Qrc complex from sulfate reducing bacteria and its ability to form a supercomplex with hydrogenase and TpIc3. FEBS Lett. 585:2177-2181.
    • (2011) FEBS Lett. , vol.585 , pp. 2177-2181
    • Venceslau, S.S.1    Matos, D.2    Pereira, I.A.C.3
  • 83
    • 0019972243 scopus 로고
    • Different KS values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate
    • Kristjansson JK, Schönheit P, Thauer RK. 1982. Different KS values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131:278-282.
    • (1982) Arch. Microbiol. , vol.131 , pp. 278-282
    • Kristjansson, J.K.1    Schönheit, P.2    Thauer, R.K.3
  • 84
    • 79958053310 scopus 로고    scopus 로고
    • Effects of molybdate and tungstate on expression levels and biochemical characteristics of formate dehydrogenases produced by Desulfovibrio alaskensis NCIMB 13491
    • Mota CS, Valette O, Gonzalez PJ, Brondino CD, Moura JJG, Moura I, Dolla A, Rivas MG. 2011. Effects of molybdate and tungstate on expression levels and biochemical characteristics of formate dehydrogenases produced by Desulfovibrio alaskensis NCIMB 13491. J. Bacteriol. 193: 2917-2923.
    • (2011) J. Bacteriol. , vol.193 , pp. 2917-2923
    • Mota, C.S.1    Valette, O.2    Gonzalez, P.J.3    Brondino, C.D.4    Moura, J.J.G.5    Moura, I.6    Dolla, A.7    Rivas, M.G.8
  • 85
    • 79958041273 scopus 로고    scopus 로고
    • Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough
    • da Silva SM, Pimentel C, Valente FMA, Rodrigues-Pousada C, Pereira IAC. 2011. Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 193: 2909-2916.
    • (2011) J. Bacteriol. , vol.193 , pp. 2909-2916
    • da Silva, S.M.1    Pimentel, C.2    Valente, F.M.A.3    Rodrigues-Pousada, C.4    Pereira, I.A.C.5
  • 86
    • 33748680507 scopus 로고    scopus 로고
    • The Tmc complex from Desulfovibrio vulgaris Hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation
    • Pereira PM, Teixeira M, Xavier AV, Louro RO, Pereira IAC. 2006. The Tmc complex from Desulfovibrio vulgaris Hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. Biochemistry 45:10359-10367.
    • (2006) Biochemistry , vol.45 , pp. 10359-10367
    • Pereira, P.M.1    Teixeira, M.2    Xavier, A.V.3    Louro, R.O.4    Pereira, I.A.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.