메뉴 건너뛰기




Volumn 141, Issue , 2006, Pages 499-503

Least squares SVM for least squares TD learning

Author keywords

[No Author keywords available]

Indexed keywords

ITERATIVE METHODS;

EID: 84885993384     PISSN: 09226389     EISSN: 18798314     Source Type: Book Series    
DOI: None     Document Type: Article
Times cited : (17)

References (14)
  • 1
    • 85151728371 scopus 로고
    • Residual algorithms: Reinforcement learning with function approximation
    • L. C. Baird, 'Residual algorithms: Reinforcement learning with function approximation', in Proc. of ICML 12, pp. 30-37, (1995).
    • (1995) Proc. of ICML 12 , pp. 30-37
    • Baird, L.C.1
  • 2
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • S. J. Bradtke and A. Barto, 'Linear least-squares algorithms for temporal difference learning', Machine Learning, 22, 33-57, (1996).
    • (1996) Machine Learning , vol.22 , pp. 33-57
    • Bradtke, S.J.1    Barto, A.2
  • 3
    • 84898947911 scopus 로고    scopus 로고
    • Sparse representation for Gaussian process models
    • L. Csató and M. Opper, 'Sparse representation for Gaussian process models', in Advances in NIPS 13, pp. 444-450, (2001).
    • (2001) Advances in NIPS 13 , pp. 444-450
    • Csató, L.1    Opper, M.2
  • 4
    • 84899029004 scopus 로고    scopus 로고
    • Batch value function approximation via support vectors
    • T. Dietterich and X. Wang, 'Batch value function approximation via support vectors', in Advances in NIPS 14, pp. 1491-1498, (2002).
    • (2002) Advances in NIPS 14 , pp. 1491-1498
    • Dietterich, T.1    Wang, X.2
  • 5
    • 1942421151 scopus 로고    scopus 로고
    • Bayes meets bellman: The gaussian process approach to temporal difference learning
    • Y. Engel, S. Mannor, and R. Meir, 'Bayes meets Bellman: The Gaussian process approach to temporal difference learning', in Proc. of ICML 20, pp. 154-161, (2003).
    • (2003) Proc. of ICML 20 , pp. 154-161
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 6
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least squares algorithm
    • Y. Engel, S. Mannor, and R. Meir, 'The kernel recursive least squares algorithm', IEEE Trans. on Sig. Proc., 52(8), 2275-2285, (2004).
    • (2004) IEEE Trans. on Sig. Proc , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 7
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representation
    • S. Fine and K. Scheinberg, 'Efficient SVM training using low-rank kernel representation', JMLR, 2, 243-264, (2001).
    • (2001) JMLR , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 8
    • 4644323293 scopus 로고    scopus 로고
    • Least-squares policy iteration
    • M. G. Lagoudakis and R. Parr, 'Least-squares policy iteration', JMLR, 4, 1107-1149, (2003).
    • (2003) JMLR , vol.4 , pp. 1107-1149
    • Lagoudakis, M.G.1    Parr, R.2
  • 9
    • 0029514510 scopus 로고
    • The parti-game algorithm for variable resolution reinforcement learning in multi-dimensional state-spaces
    • A.W. Moore and C. G. Atkeson, 'The parti-game algorithm for variable resolution reinforcement learning in multi-dimensional state-spaces', Machine Learning, 21(3), 199-233, (1995).
    • (1995) Machine Learning , vol.21 , Issue.3 , pp. 199-233
    • Moore, A.W.1    Atkeson, C.G.2
  • 11
    • 84899000575 scopus 로고    scopus 로고
    • Sparse greedy Gaussian process regression
    • A. J. Smola and P. L. Bartlett, 'Sparse greedy Gaussian process regression', in Advances in NIPS 13, pp. 619-625, (2001).
    • (2001) Advances in NIPS 13 , pp. 619-625
    • Smola, A.J.1    Bartlett, P.L.2
  • 12
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • A. J. Smola and B. Schölkopf, 'Sparse greedy matrix approximation for machine learning', in Proc. of ICML 17, pp. 911-918, (2000).
    • (2000) Proc. of ICML 17 , pp. 911-918
    • Smola, A.J.1    Schölkopf, B.2
  • 14
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. Williams and M. Seeger, 'Using the Nyström method to speed up kernel machines', in Advances in NIPS 13, pp. 682-688, (2001).
    • (2001) Advances in NIPS 13 , pp. 682-688
    • Williams, C.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.