-
1
-
-
85151728371
-
Residual algorithms: Reinforcement learning with function approximation
-
L. C. Baird, 'Residual algorithms: Reinforcement learning with function approximation', in Proc. of ICML 12, pp. 30-37, (1995).
-
(1995)
Proc. of ICML 12
, pp. 30-37
-
-
Baird, L.C.1
-
2
-
-
0001771345
-
Linear least-squares algorithms for temporal difference learning
-
S. J. Bradtke and A. Barto, 'Linear least-squares algorithms for temporal difference learning', Machine Learning, 22, 33-57, (1996).
-
(1996)
Machine Learning
, vol.22
, pp. 33-57
-
-
Bradtke, S.J.1
Barto, A.2
-
3
-
-
84898947911
-
Sparse representation for Gaussian process models
-
L. Csató and M. Opper, 'Sparse representation for Gaussian process models', in Advances in NIPS 13, pp. 444-450, (2001).
-
(2001)
Advances in NIPS 13
, pp. 444-450
-
-
Csató, L.1
Opper, M.2
-
4
-
-
84899029004
-
Batch value function approximation via support vectors
-
T. Dietterich and X. Wang, 'Batch value function approximation via support vectors', in Advances in NIPS 14, pp. 1491-1498, (2002).
-
(2002)
Advances in NIPS 14
, pp. 1491-1498
-
-
Dietterich, T.1
Wang, X.2
-
5
-
-
1942421151
-
Bayes meets bellman: The gaussian process approach to temporal difference learning
-
Y. Engel, S. Mannor, and R. Meir, 'Bayes meets Bellman: The Gaussian process approach to temporal difference learning', in Proc. of ICML 20, pp. 154-161, (2003).
-
(2003)
Proc. of ICML 20
, pp. 154-161
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
6
-
-
3543096272
-
The kernel recursive least squares algorithm
-
Y. Engel, S. Mannor, and R. Meir, 'The kernel recursive least squares algorithm', IEEE Trans. on Sig. Proc., 52(8), 2275-2285, (2004).
-
(2004)
IEEE Trans. on Sig. Proc
, vol.52
, Issue.8
, pp. 2275-2285
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
7
-
-
0041494125
-
Efficient SVM training using low-rank kernel representation
-
S. Fine and K. Scheinberg, 'Efficient SVM training using low-rank kernel representation', JMLR, 2, 243-264, (2001).
-
(2001)
JMLR
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
8
-
-
4644323293
-
Least-squares policy iteration
-
M. G. Lagoudakis and R. Parr, 'Least-squares policy iteration', JMLR, 4, 1107-1149, (2003).
-
(2003)
JMLR
, vol.4
, pp. 1107-1149
-
-
Lagoudakis, M.G.1
Parr, R.2
-
9
-
-
0029514510
-
The parti-game algorithm for variable resolution reinforcement learning in multi-dimensional state-spaces
-
A.W. Moore and C. G. Atkeson, 'The parti-game algorithm for variable resolution reinforcement learning in multi-dimensional state-spaces', Machine Learning, 21(3), 199-233, (1995).
-
(1995)
Machine Learning
, vol.21
, Issue.3
, pp. 199-233
-
-
Moore, A.W.1
Atkeson, C.G.2
-
11
-
-
84899000575
-
Sparse greedy Gaussian process regression
-
A. J. Smola and P. L. Bartlett, 'Sparse greedy Gaussian process regression', in Advances in NIPS 13, pp. 619-625, (2001).
-
(2001)
Advances in NIPS 13
, pp. 619-625
-
-
Smola, A.J.1
Bartlett, P.L.2
-
12
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
A. J. Smola and B. Schölkopf, 'Sparse greedy matrix approximation for machine learning', in Proc. of ICML 17, pp. 911-918, (2000).
-
(2000)
Proc. of ICML 17
, pp. 911-918
-
-
Smola, A.J.1
Schölkopf, B.2
-
14
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
C. Williams and M. Seeger, 'Using the Nyström method to speed up kernel machines', in Advances in NIPS 13, pp. 682-688, (2001).
-
(2001)
Advances in NIPS 13
, pp. 682-688
-
-
Williams, C.1
Seeger, M.2
|