-
1
-
-
0035089551
-
Biodegradable polymeric scaffolds for musculoskeletal tissue engineering
-
doi:10.1002/1097-4636(200105)55:2
-
Agrawal CM, Ray RB, (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55: 141-150. doi:10.1002/1097-4636(200105)55:2. PubMed: 11255165.
-
(2001)
J Biomed Mater Res
, vol.55
, pp. 141-150
-
-
Agrawal, C.M.1
Ray, R.B.2
-
2
-
-
84874926236
-
Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering
-
doi:10.1021/bm301995s
-
Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, et al. (2013) Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering. Biomacromolecules 14: 900-909. doi:10.1021/bm301995s. PubMed: 23405887.
-
(2013)
Biomacromolecules
, vol.14
, pp. 900-909
-
-
Lalwani, G.1
Henslee, A.M.2
Farshid, B.3
Lin, L.4
Kasper, F.K.5
-
3
-
-
0035864263
-
Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response
-
doi:10.1016/S0142-9612(00)00139-3
-
Langstaff S, Sayer M, Smith TJN, Pugh SM, (2001) Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials 22: 135-150. doi:10.1016/S0142-9612(00)00139-3. PubMed: 11101158.
-
(2001)
Biomaterials
, vol.22
, pp. 135-150
-
-
Langstaff, S.1
Sayer, M.2
Smith, T.J.N.3
Pugh, S.M.4
-
4
-
-
0036328783
-
Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements
-
doi:10.1016/S0142-9612(02)00153-9
-
Wang XH, Ma JB, Wang YN, He BL, (2002) Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials 23: 4167-4176. doi:10.1016/S0142-9612(02)00153-9. PubMed: 12194519.
-
(2002)
Biomaterials
, vol.23
, pp. 4167-4176
-
-
Wang, X.H.1
Ma, J.B.2
Wang, Y.N.3
He, B.L.4
-
5
-
-
0027592282
-
Bone repair of defects filled with a phosphocalcic hydraulic cement: An in vivo study
-
doi:10.1007/BF00122290
-
Munting E, Mirtchi AA, Lemaitre J, (1993) Bone repair of defects filled with a phosphocalcic hydraulic cement: An in vivo study. J Mater Sci Mater Med 4: 337-344. doi:10.1007/BF00122290.
-
(1993)
J Mater Sci Mater Med
, vol.4
, pp. 337-344
-
-
Munting, E.1
Mirtchi, A.A.2
Lemaitre, J.3
-
6
-
-
46849087163
-
Properties of Synthetic Spider Silk Fibers Based on Argiope aurantia MaSp2
-
doi:10.1021/bm701124p
-
Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, et al. (2008) Properties of Synthetic Spider Silk Fibers Based on Argiope aurantia MaSp2. Biomacromolecules 9: 1506-1510. doi:10.1021/bm701124p. PubMed: 18457450.
-
(2008)
Biomacromolecules
, vol.9
, pp. 1506-1510
-
-
Brooks, A.E.1
Stricker, S.M.2
Joshi, S.B.3
Kamerzell, T.J.4
Middaugh, C.R.5
-
7
-
-
38849138521
-
In Situ Cross-Linking of Elastin-like Polypeptide Block Copolymers for Tissue Repair
-
Lim DW, Nettles DL, Setton LA, Chilkoti A, (2007) In Situ Cross-Linking of Elastin-like Polypeptide Block Copolymers for Tissue Repair. Biomacromolecules 9: 222-230. PubMed: 18163573.
-
(2007)
Biomacromolecules
, vol.9
, pp. 222-230
-
-
Lim, D.W.1
Nettles, D.L.2
Setton, L.A.3
Chilkoti, A.4
-
8
-
-
84870252825
-
Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds
-
doi:10.1016/j.actbio.2012.08.042
-
Kang T-Y, Hong JM, Kim BJ, Cha HJ, Cho D-W, (2013) Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds. Acta Biomaterialia 9: 4716-4725. doi:10.1016/j.actbio.2012.08.042. PubMed: 22947325.
-
(2013)
Acta Biomaterialia
, vol.9
, pp. 4716-4725
-
-
Kang, T.-Y.1
Hong, J.M.2
Kim, B.J.3
Cha, H.J.4
Cho, D.-W.5
-
9
-
-
80051658463
-
Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility
-
Wang G, Zheng L, Zhao H, Miao J, Sun C, et al. (2011) Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility. ACS. Applied Materials & Interfaces 3: 1692-1701.
-
(2011)
ACS. Applied Materials & Interfaces
, vol.3
, pp. 1692-1701
-
-
Wang, G.1
Zheng, L.2
Zhao, H.3
Miao, J.4
Sun, C.5
-
10
-
-
33847671839
-
Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction
-
doi:10.1016/j.biomaterials.2007.01.022
-
Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, et al. (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 28: 2505-2524. doi:10.1016/j.biomaterials.2007.01.022. PubMed: 17292959.
-
(2007)
Biomaterials
, vol.28
, pp. 2505-2524
-
-
Cancedda, R.1
Cedola, A.2
Giuliani, A.3
Komlev, V.4
Lagomarsino, S.5
-
11
-
-
60549101494
-
Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
-
doi:10.1016/j.biomaterials.2008.12.068
-
Liu X, Smith LA, Hu J, Ma PX, (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30: 2252-2258. doi:10.1016/j.biomaterials.2008.12.068. PubMed: 19152974.
-
(2009)
Biomaterials
, vol.30
, pp. 2252-2258
-
-
Liu, X.1
Smith, L.A.2
Hu, J.3
Ma, P.X.4
-
12
-
-
79951574593
-
Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite
-
doi:10.1371/journal.pone.0016813
-
Phipps MC, Clem WC, Catledge SA, Xu Y, Hennessy KM, et al. (2011) Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite. PLOS ONE 6: e16813. doi:10.1371/journal.pone.0016813. PubMed: 21346817.
-
(2011)
PLOS ONE
, vol.6
-
-
Phipps, M.C.1
Clem, W.C.2
Catledge, S.A.3
Xu, Y.4
Hennessy, K.M.5
-
13
-
-
84862027776
-
Biomimetic Scaffolds for Tissue Engineering
-
doi:10.1002/adfm.201103083
-
Kim TG, Shin H, Lim DW, (2012) Biomimetic Scaffolds for Tissue Engineering. Adv Funct Mater 22: 2446-2468. doi:10.1002/adfm.201103083.
-
(2012)
Adv Funct Mater
, vol.22
, pp. 2446-2468
-
-
Kim, T.G.1
Shin, H.2
Lim, D.W.3
-
14
-
-
79955793532
-
Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review
-
doi:10.1021/bm200083n
-
Van Vlierberghe S, Dubruel P, Schacht E, (2011) Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 12: 1387-1408. doi:10.1021/bm200083n. PubMed: 21388145.
-
(2011)
Biomacromolecules
, vol.12
, pp. 1387-1408
-
-
Van Vlierberghe, S.1
Dubruel, P.2
Schacht, E.3
-
15
-
-
84872543336
-
Preparation of a Partially Calcified Gelatin Membrane as a Model for a Soft-to-Hard Tissue Interface
-
Aviv-Gavriel M, Garti N, Füredi-Milhofer H, (2012) Preparation of a Partially Calcified Gelatin Membrane as a Model for a Soft-to-Hard Tissue Interface. Langmuir 29: 683-689. PubMed: 23231089.
-
(2012)
Langmuir
, vol.29
, pp. 683-689
-
-
Aviv-Gavriel, M.1
Garti, N.2
Füredi-Milhofer, H.3
-
16
-
-
33751318467
-
Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels
-
doi:10.1016/j.actbio.2006.07.011
-
Chirila TV, Zainuddin, Hill DJT, Whittaker AK, Kemp A, (2007) Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels. Acta Biomaterialia 3: 95-102. doi:10.1016/j.actbio.2006.07.011. PubMed: 17071146.
-
(2007)
Acta Biomaterialia
, vol.3
, pp. 95-102
-
-
Chirila, T.V.1
Zainuddin2
Hill, D.J.T.3
Whittaker, A.K.4
Kemp, A.5
-
17
-
-
62649174049
-
Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid?
-
doi:10.1016/j.colsurfb.2008.12.027
-
Vallés Lluch A, Ferrer GG, Pradas MM, (2009) Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloids Surf B Biointerfaces 70: 218-225. doi:10.1016/j.colsurfb.2008.12.027. PubMed: 19185471.
-
(2009)
Colloids Surf B Biointerfaces
, vol.70
, pp. 218-225
-
-
Vallés Lluch, A.1
Ferrer, G.G.2
Pradas, M.M.3
-
18
-
-
84864723999
-
Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding
-
doi:10.1371/journal.pone.0042525
-
He Q, Chen H, Huang L, Dong J, Guo D, et al. (2012) Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding. PLOS ONE 7: e42525. doi:10.1371/journal.pone.0042525. PubMed: 22905143.
-
(2012)
PLOS ONE
, vol.7
-
-
He, Q.1
Chen, H.2
Huang, L.3
Dong, J.4
Guo, D.5
-
19
-
-
84858073988
-
Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: Preparation and characterization
-
Tanase CE, Popa MI, Verestiuc L, (2012) Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: Preparation and characterization. J Biomed Mater Res B Appl Biomater 100 B: 700-708. PubMed: 22121073.
-
(2012)
J Biomed Mater Res B Appl Biomater
, vol.100 B
, pp. 700-708
-
-
Tanase, C.E.1
Popa, M.I.2
Verestiuc, L.3
-
20
-
-
84874604303
-
In Vitro and In Vivo Evaluation of Zinc-Modified Ca-Si-Based Ceramic Coating for Bone Implants
-
doi:10.1371/journal.pone.0057564
-
Yu J, Li K, Zheng X, He D, Ye X, et al. (2013) In Vitro and In Vivo Evaluation of Zinc-Modified Ca-Si-Based Ceramic Coating for Bone Implants. PLOS ONE 8: e57564. doi:10.1371/journal.pone.0057564. PubMed: 23483914.
-
(2013)
PLOS ONE
, vol.8
-
-
Yu, J.1
Li, K.2
Zheng, X.3
He, D.4
Ye, X.5
-
21
-
-
79953328796
-
Chitin Scaffolds in Tissue Engineering
-
doi:10.3390/ijms12031876
-
Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, et al. (2011) Chitin Scaffolds in Tissue Engineering. Int J Mol Sci 12: 1876-1887. doi:10.3390/ijms12031876. PubMed: 21673928.
-
(2011)
Int J Mol Sci
, vol.12
, pp. 1876-1887
-
-
Jayakumar, R.1
Chennazhi, K.P.2
Srinivasan, S.3
Nair, S.V.4
Furuike, T.5
-
22
-
-
0032531282
-
Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds
-
doi:10.1002/(SICI)1097-4636(19980915)41:4
-
Wan ACA, Khor E, Hastings GW, (1998) Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. J Biomed Mater Res 41: 541-548. doi:10.1002/(SICI)1097-4636(19980915)41:4. PubMed: 9697026.
-
(1998)
J Biomed Mater Res
, vol.41
, pp. 541-548
-
-
Wan, A.C.A.1
Khor, E.2
Hastings, G.W.3
-
23
-
-
0030222205
-
Promotion of calcification on carboxymethylchitin discs
-
doi:10.1016/0142-9612(96)89778-X
-
Wan AGA, Khor E, Wong JM, Hastings GW, (1996) Promotion of calcification on carboxymethylchitin discs. Biomaterials 17: 1529-1534. doi:10.1016/0142-9612(96)89778-X. PubMed: 8853124.
-
(1996)
Biomaterials
, vol.17
, pp. 1529-1534
-
-
Wan, A.G.A.1
Khor, E.2
Wong, J.M.3
Hastings, G.W.4
-
24
-
-
0032126731
-
The influence of anionic chitin derivatives on calcium phosphate crystallization
-
doi:10.1016/S0142-9612(98)00046-5
-
Andrew Wan, Khor E, Hastings GW, (1998) The influence of anionic chitin derivatives on calcium phosphate crystallization. Biomaterials 19: 1309-1316. doi:10.1016/S0142-9612(98)00046-5. PubMed: 9720895.
-
(1998)
Biomaterials
, vol.19
, pp. 1309-1316
-
-
Khor, E.1
Hastings, G.W.2
-
25
-
-
0034885215
-
O-carboxymethyl-chitin concentration in granulocytes during bone repair
-
doi:10.1021/bm0001345
-
Tokura S, Tamura H, (2001) O-carboxymethyl-chitin concentration in granulocytes during bone repair. Biomacromolecules 2: 417-421. doi:10.1021/bm0001345. PubMed: 11749201.
-
(2001)
Biomacromolecules
, vol.2
, pp. 417-421
-
-
Tokura, S.1
Tamura, H.2
-
26
-
-
84885693257
-
A New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution
-
Bleek K, Taubert, A New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomaterialia.
-
Acta Biomaterialia
-
-
Bleek, K.1
Taubert2
-
27
-
-
0036498038
-
Study of a chitin-based gel as injectable material in periodontal surgery
-
doi:10.1016/S0142-9612(01)00247-2
-
Gérentes P, Vachoud L, Doury J, Domard A, (2002) Study of a chitin-based gel as injectable material in periodontal surgery. Biomaterials 23: 1295-1302. doi:10.1016/S0142-9612(01)00247-2. PubMed: 11804285.
-
(2002)
Biomaterials
, vol.23
, pp. 1295-1302
-
-
Gérentes, P.1
Vachoud, L.2
Doury, J.3
Domard, A.4
-
28
-
-
33645049860
-
Experimental studies on hydroxyapatite powder-carboxymethyl chitin composite: Injectable material for bone augmentation
-
doi:10.1016/j.bjps.2004.11.022
-
Uda H, Sugawara Y, Nakasu M, (2006) Experimental studies on hydroxyapatite powder-carboxymethyl chitin composite: Injectable material for bone augmentation. J Plast Reconstr Aesthet Surg 59: 188-196. doi:10.1016/j.bjps.2004.11.022. PubMed: 16703865.
-
(2006)
J Plast Reconstr Aesthet Surg
, vol.59
, pp. 188-196
-
-
Uda, H.1
Sugawara, Y.2
Nakasu, M.3
-
29
-
-
84873809308
-
The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering
-
doi:10.1371/journal.pone.0054838
-
Da H, Jia S-J, Meng G-L, Cheng J-H, Zhou W, et al. (2013) The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering. PLOS ONE 8: e54838. doi:10.1371/journal.pone.0054838. PubMed: 23382984.
-
(2013)
PLOS ONE
, vol.8
-
-
Da, H.1
Jia, S.-J.2
Meng, G.-L.3
Cheng, J.-H.4
Zhou, W.5
-
30
-
-
78649882733
-
Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration
-
doi:10.1002/adfm.201000838
-
Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, et al. (2010) Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration. Adv Funct Mater 20: 3835-3845. doi:10.1002/adfm.201000838.
-
(2010)
Adv Funct Mater
, vol.20
, pp. 3835-3845
-
-
Mahony, O.1
Tsigkou, O.2
Ionescu, C.3
Minelli, C.4
Ling, L.5
-
31
-
-
0036739152
-
Characterization of a Genetically Engineered Elastin-like Polypeptide for Cartilaginous Tissue Repair
-
doi:10.1021/bm0255037
-
Betre H, Setton LA, Meyer DE, Chilkoti A, (2002) Characterization of a Genetically Engineered Elastin-like Polypeptide for Cartilaginous Tissue Repair. Biomacromolecules 3: 910-916. doi:10.1021/bm0255037. PubMed: 12217035.
-
(2002)
Biomacromolecules
, vol.3
, pp. 910-916
-
-
Betre, H.1
Setton, L.A.2
Meyer, D.E.3
Chilkoti, A.4
-
32
-
-
84859866826
-
Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue-Engineering Vasculature: In a Canine Inferior Vena Cava Model
-
doi:10.1371/journal.pone.0035760
-
Matsumura G, Nitta N, Matsuda S, Sakamoto Y, Isayama N, et al. (2012) Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue-Engineering Vasculature: In a Canine Inferior Vena Cava Model. PLOS ONE 7: e35760. doi:10.1371/journal.pone.0035760. PubMed: 22532873.
-
(2012)
PLOS ONE
, vol.7
-
-
Matsumura, G.1
Nitta, N.2
Matsuda, S.3
Sakamoto, Y.4
Isayama, N.5
-
33
-
-
74349125458
-
Advances and Applications of Biodegradable Elastomers in Regenerative Medicine
-
doi:10.1002/adfm.200901040
-
Serrano MC, Chung EJ, Ameer GA, (2010) Advances and Applications of Biodegradable Elastomers in Regenerative Medicine. Adv Funct Mater 20: 192-208. doi:10.1002/adfm.200901040.
-
(2010)
Adv Funct Mater
, vol.20
, pp. 192-208
-
-
Serrano, M.C.1
Chung, E.J.2
Ameer, G.A.3
-
34
-
-
84858077892
-
Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering
-
Sagar N, Soni VP, Bellare JR, (2012) Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering. J Biomed Mater Res B Appl Biomater 100 B: 624-636. PubMed: 22323281.
-
(2012)
J Biomed Mater Res B Appl Biomater
, vol.100 B
, pp. 624-636
-
-
Sagar, N.1
Soni, V.P.2
Bellare, J.R.3
-
35
-
-
80051962186
-
A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action
-
doi:10.1002/jbmr.434
-
Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K, et al. (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26: 2096-2111. doi:10.1002/jbmr.434. PubMed: 21638315.
-
(2011)
J Bone Miner Res
, vol.26
, pp. 2096-2111
-
-
Sharan, K.1
Mishra, J.S.2
Swarnkar, G.3
Siddiqui, J.A.4
Khan, K.5
-
36
-
-
10744220089
-
A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing
-
doi:10.1359/jbmr.2003.18.11.2033
-
Li M, Ke HZ, Qi H, Healy DR, Li Y, et al. (2003) A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing. J Bone Miner Res 18: 2033-2042. doi:10.1359/jbmr.2003.18.11.2033. PubMed: 14606517.
-
(2003)
J Bone Miner Res
, vol.18
, pp. 2033-2042
-
-
Li, M.1
Ke, H.Z.2
Qi, H.3
Healy, D.R.4
Li, Y.5
-
37
-
-
73449097791
-
Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae
-
doi:10.1002/term.186
-
Sharma S, Patil DJ, Soni VP, Sarkate LB, Khandekar GS, et al. (2009) Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med 3: 501-511. doi:10.1002/term.186. PubMed: 19621346.
-
(2009)
J Tissue Eng Regen Med
, vol.3
, pp. 501-511
-
-
Sharma, S.1
Patil, D.J.2
Soni, V.P.3
Sarkate, L.B.4
Khandekar, G.S.5
-
38
-
-
0033860607
-
Is human fracture hematoma inherently angiogenic?
-
doi:10.1097/00003086-200009000-00033
-
Street J, Winter D, Wang JH, et al. (2000) Is human fracture hematoma inherently angiogenic? Clin Orthop Relat Res; Volumes 378: 224-237. doi:10.1097/00003086-200009000-00033. PubMed: 10986998.
-
(2000)
Clin Orthop Relat Res
, vol.378
, pp. 224-237
-
-
Street, J.1
Winter, D.2
Wang, J.H.3
-
39
-
-
0025087997
-
The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma
-
Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T, et al. (1990) The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg Br 72-B: 822-829.
-
(1990)
J Bone Joint Surg Br
, vol.72 B
, pp. 822-829
-
-
Mizuno, K.1
Mineo, K.2
Tachibana, T.3
Sumi, M.4
Matsubara, T.5
-
40
-
-
34548572178
-
Cytocompatible Hydrogels Based on Photocrosslinkable Methacrylated O-Carboxymethylchitosan with Tunable Charge: Synthesis and Characterization
-
doi:10.1002/adfm.200600420
-
Poon YF, Zhu YB, Shen JY, Chan-Park MB, Ng SC, (2007) Cytocompatible Hydrogels Based on Photocrosslinkable Methacrylated O-Carboxymethylchitosan with Tunable Charge: Synthesis and Characterization. Adv Funct Mater 17: 2139-2150. doi:10.1002/adfm.200600420.
-
(2007)
Adv Funct Mater
, vol.17
, pp. 2139-2150
-
-
Poon, Y.F.1
Zhu, Y.B.2
Shen, J.Y.3
Chan-Park, M.B.4
Ng, S.C.5
-
41
-
-
0001287892
-
Regulation of fracture repair and synthesis of matrix macromolecules
-
Brighton CT, Friedlander GE, Lane JM (eds), Rosemont: American Academy of Orthopaedic Surgeons
-
(1994) Bolander ME. Regulation of fracture repair and synthesis of matrix macromolecules. Brighton CT, Friedlander GE, Lane JM (eds), Bone Formation and Repair. Rosemont: American Academy of Orthopaedic Surgeons, 117-141.
-
(1994)
Bone Formation and Repair
, pp. 117-141
-
-
-
42
-
-
0036599845
-
The Role of Growth Factors in the Repair of Bone Biology and Clinical Applications
-
Lieberman JR, Daluiski A, Einhorn TA, (2002) The Role of Growth Factors in the Repair of Bone Biology and Clinical Applications. J Bone Joint Surg 84: 1032-1044. PubMed: 12063342.
-
(2002)
J Bone Joint Surg
, vol.84
, pp. 1032-1044
-
-
Lieberman, J.R.1
Daluiski, A.2
Einhorn, T.A.3
-
43
-
-
0001921150
-
Bones and joints
-
In: Rubin E, Farber JL, eds, Philadelphia: J. B. Lippincott Publishing House Co
-
Schiller AL, Bones and joints. In: Rubin E, Farber JL, eds., Pathology, pp. 1304-1393. Philadelphia: J. B. Lippincott Publishing House Co., 1988.
-
(1988)
Pathology
, pp. 1304-1393
-
-
Schiller, A.L.1
-
44
-
-
34748853167
-
Bone bonding at natural and biomaterial surfaces
-
doi:10.1016/j.biomaterials.2007.07.049
-
Davies JE, (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28: 5058-5067. doi:10.1016/j.biomaterials.2007.07.049. PubMed: 17697711.
-
(2007)
Biomaterials
, vol.28
, pp. 5058-5067
-
-
Davies, J.E.1
-
46
-
-
24344488119
-
Bone healing: histologic and physiologic concepts
-
2nd ed. Stuttgart, Germany: Thieme Verlag
-
Rahn BA, (2002) Bone healing: histologic and physiologic concepts. In: Sumner-Smith G, eds. Bone in Clinical Orthopaedics. 2nd ed. Stuttgart, Germany: Thieme Verlag. pp. pp. 287-325.
-
(2002)
Bone in Clinical Orthopaedics
, pp. 287-325
-
-
Sumner-Smith, G.1
-
47
-
-
84861622526
-
Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells
-
doi:10.1016/j.actbio.2012.03.019
-
Correia C, Bhumiratana S, Yan L-P, Oliveira AL, Gimble JM, et al. (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia 8: 2483-2492. doi:10.1016/j.actbio.2012.03.019. PubMed: 22421311.
-
(2012)
Acta Biomaterialia
, vol.8
, pp. 2483-2492
-
-
Correia, C.1
Bhumiratana, S.2
Yan, L.-P.3
Oliveira, A.L.4
Gimble, J.M.5
-
48
-
-
36549054149
-
Assessing angiogenesis during fracture healing
-
Lu C, Marcucio R, Miclau T, (2006) Assessing angiogenesis during fracture healing. Iowa Orthop J 26: 17-26. PubMed: 16789443.
-
(2006)
Iowa Orthop J
, vol.26
, pp. 17-26
-
-
Lu, C.1
Marcucio, R.2
Miclau, T.3
-
49
-
-
68949090044
-
Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes
-
doi:10.1016/j.actbio.2009.02.033
-
Mandal BB, Kundu SC, (2009) Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomaterialia 5: 2579-2590. doi:10.1016/j.actbio.2009.02.033. PubMed: 19345621.
-
(2009)
Acta Biomaterialia
, vol.5
, pp. 2579-2590
-
-
Mandal, B.B.1
Kundu, S.C.2
-
50
-
-
79960496535
-
Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene-Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration
-
doi:10.1002/adfm.201100275
-
Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR, et al. (2011) Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene-Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration. Adv Funct Mater 21: 2641-2651. doi:10.1002/adfm.201100275.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 2641-2651
-
-
Deng, M.1
Kumbar, S.G.2
Nair, L.S.3
Weikel, A.L.4
Allcock, H.R.5
-
51
-
-
0033302004
-
Tissue engineering: orthopedic applications
-
doi:10.1146/annurev.bioeng.1.1.19
-
Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr., (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1: 19-46. doi:10.1146/annurev.bioeng.1.1.19. PubMed: 11701481.
-
(1999)
Annu Rev Biomed Eng
, vol.1
, pp. 19-46
-
-
Laurencin, C.T.1
Ambrosio, A.M.2
Borden, M.D.3
Cooper Jr., J.A.4
-
52
-
-
0027244892
-
A new theory of bone lamellation
-
doi:10.1007/BF01673402
-
Marotti G, (1993) A new theory of bone lamellation. Calcif Tissue Int 53: S47-S56. doi:10.1007/BF01673402. PubMed: 8275380.
-
(1993)
Calcif Tissue Int
, vol.53
-
-
Marotti, G.1
-
53
-
-
0026529338
-
Bone structure: from angstroms to microns
-
Weiner S, Traub W, (1992) Bone structure: from angstroms to microns. FASEB J 6: 879-885. PubMed: 1740237.
-
(1992)
FASEB J
, vol.6
, pp. 879-885
-
-
Weiner, S.1
Traub, W.2
-
54
-
-
62149106670
-
Cell proliferation and migration in silk fibroin 3D scaffolds
-
doi:10.1016/j.biomaterials.2009.02.006
-
Mandal BB, Kundu SC, (2009) Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30: 2956-2965. doi:10.1016/j.biomaterials.2009.02.006. PubMed: 19249094.
-
(2009)
Biomaterials
, vol.30
, pp. 2956-2965
-
-
Mandal, B.B.1
Kundu, S.C.2
-
55
-
-
70449088920
-
The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering
-
doi:10.1016/j.biomaterials.2009.09.063
-
Murphy CM, Haugh MG, O'Brien FJ, (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31: 461-466. doi:10.1016/j.biomaterials.2009.09.063. PubMed: 19819008.
-
(2010)
Biomaterials
, vol.31
, pp. 461-466
-
-
Murphy, C.M.1
Haugh, M.G.2
O'Brien, F.J.3
-
56
-
-
80055032494
-
In Vivo Evaluation of the Biocompatibility of Surface Modified Hemodialysis Polysulfone Hollow Fibers in Rat
-
doi:10.1371/journal.pone.0025236
-
Dahe GJ, Kadam SS, Sabale SS, Kadam DP, Sarkate LB, et al. (2011) In Vivo Evaluation of the Biocompatibility of Surface Modified Hemodialysis Polysulfone Hollow Fibers in Rat. PLOS ONE 6: e25236. doi:10.1371/journal.pone.0025236. PubMed: 22046236.
-
(2011)
PLOS ONE
, vol.6
-
-
Dahe, G.J.1
Kadam, S.S.2
Sabale, S.S.3
Kadam, D.P.4
Sarkate, L.B.5
|