-
1
-
-
0029484103
-
A survey and critique of techniques for extracting rules from trained neural networks
-
Andrews, R., Diederich, J., Tickle, A.B.: A survey and critique of techniques for extracting rules from trained neural networks. Knowledge Based Systems 8(6), 373-389 (1995)
-
(1995)
Knowledge Based Systems
, vol.8
, Issue.6
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.B.3
-
2
-
-
0038209756
-
Benchmarking state-of-the-art classification algorithms for credit scoring
-
Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society 54(6), 627-635 (2003)
-
(2003)
Journal of the Operational Research Society
, vol.54
, Issue.6
, pp. 627-635
-
-
Baesens, B.1
van Gestel, T.2
Viaene, S.3
Stepanova, M.4
Suykens, J.5
Vanthienen, J.6
-
3
-
-
0037534150
-
Using neural network rule extraction and decision tables for credit risk evaluation
-
Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit risk evaluation. Management Science 49(3), 312-329 (2003)
-
(2003)
Management Science
, vol.49
, Issue.3
, pp. 312-329
-
-
Baesens, B.1
Setiono, R.2
Mues, C.3
Vanthienen, J.4
-
4
-
-
0038209756
-
Benchmarking state-of-the-art classification algorithms for credit scoring
-
Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society 54(6), 627-635 (2003)
-
(2003)
Journal of the Operational Research Society
, vol.54
, Issue.6
, pp. 627-635
-
-
Baesens, B.1
van Gestel, T.2
Viaene, S.3
Stepanova, M.4
Suykens, J.5
Vanthienen, J.6
-
6
-
-
34047198979
-
Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve
-
IEEE Computer Society, Los Alamitos
-
Barakat, N.H., Bradley, A.P.: Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve. In: Proc. of ICPR, vol. (2), pp. 812-815. IEEE Computer Society, Los Alamitos (2006)
-
(2006)
Proc. of ICPR
, vol.2
, pp. 812-815
-
-
Barakat, N.H.1
Bradley, A.P.2
-
8
-
-
0001024110
-
First- and second-order methods for learning: Between steepest descent and Newton's method
-
Battiti, R.: First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation 4, 141-166 (1992)
-
(1992)
Neural Computation
, vol.4
, pp. 141-166
-
-
Battiti, R.1
-
9
-
-
0003487601
-
Neural networks for pattern recognition
-
Oxford University Press
-
Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)
-
(1995)
Oxford
-
-
Bishop, C.M.1
-
11
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Machine Learning 15(2), 201-221 (1994)
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
14
-
-
0001260194
-
Exact Simplification of support vector solutions
-
Downs, T., Gates, K.E., Masters, A.: Exact Simplification of support vector solutions. Journal of Machine Learning Research 2, 293-297 (2001)
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 293-297
-
-
Downs, T.1
Gates, K.E.2
Masters, A.3
-
15
-
-
50549087357
-
PRIE: A system for generating rulelists to maximize ROC performance
-
Fawcett, T.: PRIE: A system for generating rulelists to maximize ROC performance. Data Mining and Knowledge Discovery 17(2), 207-224 (2008)
-
(2008)
Data Mining and Knowledge Discovery
, vol.17
, Issue.2
, pp. 207-224
-
-
Fawcett, T.1
-
16
-
-
32344439223
-
Rule Extraction from linear support vector machines
-
Fung, G., Sandilya, S., Rao, R.B.: Rule Extraction from linear support vector machines. In: Proc. 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 32-40 (2005)
-
(2005)
Proc. 11th ACM SIGKDD International Conference On Knowledge Discovery In Data Mining
, pp. 32-40
-
-
Fung, G.1
Sandilya, S.2
Rao, R.B.3
-
17
-
-
0003979924
-
-
Addison-Wesley, Redwood City
-
Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the theory of neural computation. Addison-Wesley, Redwood City (1991)
-
(1991)
Introduction to The Theory of Neural Computation
-
-
Hertz, J.1
Krogh, A.2
Palmer, R.G.3
-
18
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989)
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
19
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415-425 (2002)
-
(2002)
IEEE Transactions On Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
20
-
-
33751378719
-
ITER: An algorithm for predictive regression rule extraction
-
In: Tjoa, A.M., Trujillo, J. (eds.), Springer, Heidelberg
-
Huysmans, J., Baesens, B., Vanthienen, J.: ITER: An algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270-279. Springer, Heidelberg (2006)
-
(2006)
DaWaK 2006. LNCS
, vol.4081
, pp. 270-279
-
-
Huysmans, J.1
Baesens, B.2
Vanthienen, J.3
-
21
-
-
49349089233
-
Benchmarking classification models for software defect prediction: A proposed framework and novel findings
-
Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Transactions Software Engineering 34(4), 485-496 (2008)
-
(2008)
IEEE Transactions Software Engineering
, vol.34
, Issue.4
, pp. 485-496
-
-
Lessmann, S.1
Baesens, B.2
Mues, C.3
Pietsch, S.4
-
22
-
-
68549115709
-
Decompositional rule extraction from support vector machines by active learning
-
Martens, D., Van Gestel, T., Baesens, B.: Decompositional rule extraction from support vector machines by active learning. IEEE Transactions on Knowledge and Data Engineering 21(2), 178-191 (2009)
-
(2009)
IEEE Transactions On Knowledge and Data Engineering
, vol.21
, Issue.2
, pp. 178-191
-
-
Martens, D.1
van Gestel, T.2
Baesens, B.3
-
23
-
-
10944251335
-
Rule extraction from support vector machines
-
Nũnez, H., Angulo, C., Català, A.: Rule extraction from support vector machines. In: Proc. European Symposium on Artificial Neural Networks (ESANN), pp. 107-112 (2002)
-
(2002)
Proc. European Symposium On Artificial Neural Networks (ESANN
, pp. 107-112
-
-
Nũnez, H.1
Angulo, C.2
Català, A.3
-
26
-
-
34247507155
-
Decision-centric active learning of binaryoutcome models
-
Saar-Tsechansky, M., Provost, F.: Decision-centric active learning of binaryoutcome models. Information Systems Research 18(1), 4-22 (2007)
-
(2007)
Information Systems Research
, vol.18
, Issue.1
, pp. 4-22
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
27
-
-
21844514693
-
A neural network construction algorithm which maximizes the likelihood function
-
Setiono, R.: A neural network construction algorithm which maximizes the likelihood function. Connection Science 7(2), 147-166 (1995)
-
(1995)
Connection Science
, vol.7
, Issue.2
, pp. 147-166
-
-
Setiono, R.1
-
28
-
-
0029185114
-
Use of quasi-Newton method in a feedforward neural network construction algorithm
-
Setiono, R., Hui, L.C.K.: Use of quasi-Newton method in a feedforward neural network construction algorithm. IEEE Transactions on Neural Networks 6(2), 326-332 (1995)
-
(1995)
IEEE Transactions On Neural Networks
, vol.6
, Issue.2
, pp. 326-332
-
-
Setiono, R.1
Hui, L.C.K.2
-
29
-
-
0030633575
-
A penalty function approach for pruning feedforward neural networks
-
Setiono, R.: A penalty function approach for pruning feedforward neural networks. Neural Computation 9(1), 185-204 (1997)
-
(1997)
Neural Computation
, vol.9
, Issue.1
, pp. 185-204
-
-
Setiono, R.1
-
30
-
-
40549122717
-
Recursive neural network rule extraction for data with mixed attributes
-
Setiono, R., Baesens, B., Mues, C.: Recursive neural network rule extraction for data with mixed attributes. IEEE Transactions on Neural Networks 19(2), 299-307 (2008)
-
(2008)
IEEE Transactions On Neural Networks
, vol.19
, Issue.2
, pp. 299-307
-
-
Setiono, R.1
Baesens, B.2
Mues, C.3
-
31
-
-
25144464662
-
Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
-
Sexton, R.S., McMurtrey, S., Cleavenger, D.J.: Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem. European Journal of Operational Research 168, 1009-1018 (2006)
-
(2006)
European Journal of Operational Research
, vol.168
, pp. 1009-1018
-
-
Sexton, R.S.1
McMurtrey, S.2
Cleavenger, D.J.3
-
32
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least squares support vector machines. World Scientific, Singapore (2003)
-
(2003)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
van Gestel, T.2
de Brabanter, J.3
de Moor, B.4
Vandewalle, J.5
-
34
-
-
0032208720
-
The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
-
Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks 9(6), 1057-1068 (1998)
-
(1998)
IEEE Transactions On Neural Networks
, vol.9
, Issue.6
, pp. 1057-1068
-
-
Tickle, A.B.1
Andrews, R.2
Golea, M.3
Diederich, J.4
-
35
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
Tipping, M.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211-244 (2001)
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.1
|