메뉴 건너뛰기




Volumn 25, Issue , 2012, Pages 299-320

Rule Extraction from Neural Networks and Support Vector Machines for Credit Scoring

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84885660668     PISSN: 18684394     EISSN: 18684408     Source Type: Book Series    
DOI: 10.1007/978-3-642-23151-3_13     Document Type: Article
Times cited : (2)

References (36)
  • 1
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained neural networks
    • Andrews, R., Diederich, J., Tickle, A.B.: A survey and critique of techniques for extracting rules from trained neural networks. Knowledge Based Systems 8(6), 373-389 (1995)
    • (1995) Knowledge Based Systems , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 3
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit risk evaluation
    • Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit risk evaluation. Management Science 49(3), 312-329 (2003)
    • (2003) Management Science , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 6
    • 34047198979 scopus 로고    scopus 로고
    • Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve
    • IEEE Computer Society, Los Alamitos
    • Barakat, N.H., Bradley, A.P.: Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve. In: Proc. of ICPR, vol. (2), pp. 812-815. IEEE Computer Society, Los Alamitos (2006)
    • (2006) Proc. of ICPR , vol.2 , pp. 812-815
    • Barakat, N.H.1    Bradley, A.P.2
  • 7
    • 34247555584 scopus 로고    scopus 로고
    • Rule extraction from support vector machines: A sequential covering approach
    • Barakat, N.H., Bradley, A.P.: Rule extraction from support vector machines: A sequential covering approach. IEEE Transactions on Knowledge and Data Engineering 19(6), 729-741 (2007)
    • (2007) IEEE Transactions On Knowledge and Data Engineering , vol.19 , Issue.6 , pp. 729-741
    • Barakat, N.H.1    Bradley, A.P.2
  • 8
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • Battiti, R.: First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation 4, 141-166 (1992)
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 9
    • 0003487601 scopus 로고
    • Neural networks for pattern recognition
    • Oxford University Press
    • Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)
    • (1995) Oxford
    • Bishop, C.M.1
  • 11
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Machine Learning 15(2), 201-221 (1994)
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 15
    • 50549087357 scopus 로고    scopus 로고
    • PRIE: A system for generating rulelists to maximize ROC performance
    • Fawcett, T.: PRIE: A system for generating rulelists to maximize ROC performance. Data Mining and Knowledge Discovery 17(2), 207-224 (2008)
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 207-224
    • Fawcett, T.1
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989)
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415-425 (2002)
    • (2002) IEEE Transactions On Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 20
    • 33751378719 scopus 로고    scopus 로고
    • ITER: An algorithm for predictive regression rule extraction
    • In: Tjoa, A.M., Trujillo, J. (eds.), Springer, Heidelberg
    • Huysmans, J., Baesens, B., Vanthienen, J.: ITER: An algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270-279. Springer, Heidelberg (2006)
    • (2006) DaWaK 2006. LNCS , vol.4081 , pp. 270-279
    • Huysmans, J.1    Baesens, B.2    Vanthienen, J.3
  • 21
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Transactions Software Engineering 34(4), 485-496 (2008)
    • (2008) IEEE Transactions Software Engineering , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 26
    • 34247507155 scopus 로고    scopus 로고
    • Decision-centric active learning of binaryoutcome models
    • Saar-Tsechansky, M., Provost, F.: Decision-centric active learning of binaryoutcome models. Information Systems Research 18(1), 4-22 (2007)
    • (2007) Information Systems Research , vol.18 , Issue.1 , pp. 4-22
    • Saar-Tsechansky, M.1    Provost, F.2
  • 27
    • 21844514693 scopus 로고
    • A neural network construction algorithm which maximizes the likelihood function
    • Setiono, R.: A neural network construction algorithm which maximizes the likelihood function. Connection Science 7(2), 147-166 (1995)
    • (1995) Connection Science , vol.7 , Issue.2 , pp. 147-166
    • Setiono, R.1
  • 28
    • 0029185114 scopus 로고
    • Use of quasi-Newton method in a feedforward neural network construction algorithm
    • Setiono, R., Hui, L.C.K.: Use of quasi-Newton method in a feedforward neural network construction algorithm. IEEE Transactions on Neural Networks 6(2), 326-332 (1995)
    • (1995) IEEE Transactions On Neural Networks , vol.6 , Issue.2 , pp. 326-332
    • Setiono, R.1    Hui, L.C.K.2
  • 29
    • 0030633575 scopus 로고    scopus 로고
    • A penalty function approach for pruning feedforward neural networks
    • Setiono, R.: A penalty function approach for pruning feedforward neural networks. Neural Computation 9(1), 185-204 (1997)
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 185-204
    • Setiono, R.1
  • 30
    • 40549122717 scopus 로고    scopus 로고
    • Recursive neural network rule extraction for data with mixed attributes
    • Setiono, R., Baesens, B., Mues, C.: Recursive neural network rule extraction for data with mixed attributes. IEEE Transactions on Neural Networks 19(2), 299-307 (2008)
    • (2008) IEEE Transactions On Neural Networks , vol.19 , Issue.2 , pp. 299-307
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 31
    • 25144464662 scopus 로고    scopus 로고
    • Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
    • Sexton, R.S., McMurtrey, S., Cleavenger, D.J.: Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem. European Journal of Operational Research 168, 1009-1018 (2006)
    • (2006) European Journal of Operational Research , vol.168 , pp. 1009-1018
    • Sexton, R.S.1    McMurtrey, S.2    Cleavenger, D.J.3
  • 34
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks 9(6), 1057-1068 (1998)
    • (1998) IEEE Transactions On Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 35
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tipping, M.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211-244 (2001)
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.