메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning by focusing: A new framework for concept recognition and feature selection

Author keywords

classification; feature selection; learning by focusing

Indexed keywords

CONCEPT RECOGNITION; CONCEPT STRUCTURES; HUMAN VISION; NEW APPROACHES; NONLINEAR CLASSIFIERS; VISUAL FEATURE;

EID: 84885602272     PISSN: 19457871     EISSN: 1945788X     Source Type: Conference Proceeding    
DOI: 10.1109/ICME.2013.6607609     Document Type: Conference Paper
Times cited : (6)

References (18)
  • 1
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • N. Pinto, D.O. Cox, and J.J. DiCarlo, "Why is real-world visual object recognition hard?, " PLoS computational biology, vol. 4, no. 1, pp. e27, 2008.
    • (2008) PLoS Computational Biology , vol.4 , Issue.1
    • Pinto, N.1    Cox, D.O.2    Dicarlo, J.J.3
  • 5
    • 84970417663 scopus 로고
    • Interest, prior knowledge, and learning
    • S. Tobias, "Interest, prior knowledge, and learning, " Review of Educational Research, vol. 64, no. I, pp. 37, 1994 .
    • (1994) Review of Educational Research , vol.64 , Issue.1 , pp. 37
    • Tobias, S.1
  • 6
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, " Computer Vision and image Understanding, vol. 106, no. 1, pp. 59-70, 2007.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 7
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset
    • California Institute of Technology
    • G. Griffin, A Holub, and P. Perona, "Caltech-256 object category dataset, " Tech. Rep. 7694, California Institute of Technology, 2007.
    • (2007) Tech. Rep , vol.7694
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 8
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • R. Rifkin and A. Klautau, "In defense of one-vs-all classification, " JMLR, vol. 5, pp. 101-141, 2004.
    • (2004) JMLR , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 9
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • R.E. Fan, K.W. Chang, C.1. Hsieh, X.R. Wang, and C.1. Lin, "Liblinear: A library for large linear classification, " JMLR, vol. 9, pp. 1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.E.1    Chang, C.I.2    Hsieh, X.R.3    Wang, K.W.4    Lin, C.I.5
  • 10
    • 77956195198 scopus 로고    scopus 로고
    • Large linear classification when data cannot fit in memory
    • ACM
    • H.F. Yu, C.1. Hsieh, K.W. Chang, and C.1. Lin, "Large linear classification when data cannot fit in memory, " in ACM SIGKDD. ACM, 2010, pp. 833-842.
    • (2010) ACM SIGKDD , pp. 833-842
    • Yu, H.F.1    Hsieh, C.I.2    Chang, K.W.3    Lin, C.I.4
  • 11
    • 12244257798 scopus 로고    scopus 로고
    • Semantic representation: Search and mining of multimedia content
    • AP. Natsev, M.R. Naphade, and J.R. Smith, "Semantic representation: search and mining of multimedia content, " in SiGKDD, 2004, pp. 641-646.
    • (2004) SiGKDD , pp. 641-646
    • Natsev, A.P.1    Naphade, M.R.2    Smith, J.R.3
  • 12
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification
    • R. Yan, 1. Tesic, and 1.R. Smith, "Model-shared subspace boosting for multi-label classification, " in ACM SiGKDD, 2007, pp. 834-843.
    • (2007) ACM SiGKDD , pp. 834-843
    • Yan, R.1    Tesic, I.2    Smith, I.R.3
  • 14
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (VOC) challenge
    • M.E.L. Van and A. Zisserrnan, "The pascal visual object classes (VOC) challenge, " JJCV, vol. 88, no. 3, pp. 3-338, 2010.
    • (2010) JJCV , vol.88 , Issue.3 , pp. 3-338
    • Van, M.E.L.1    Zisserrnan, A.2
  • 15
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • J. Deng, W. Dong, R. Socher, L.I. Li, K. Li, and 1. Fei-Fei, "Imagenet: A large-scale hierarchical image database, " in CVPR, 2009, pp. 248-255.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, K.4    Li, L.I.5    Fei-Fei, I.6
  • 16
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • S. Maji, A.C. Berg, and 1. Malik, "Classification using intersection kernel support vector machines is efficient, " in C VP R, 2008.
    • (2008) C VP R
    • Maji, S.1    Berg, A.C.2    Malik, I.3
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • I. Breiman, "Bagging predictors, " Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.