메뉴 건너뛰기




Volumn 113, Issue , 2014, Pages 1692-1699

Synergetic mechanism of methanol-steam reforming reaction in a catalytic reactor with electric discharges

Author keywords

Electric discharge; Hydrogen production; Methanol steam reforming; Plasma reforming; Reaction mechanism

Indexed keywords

CATALYSIS; CATALYSTS; HYDROGEN PRODUCTION; METHANOL; REACTION KINETICS; STEAM REFORMING;

EID: 84885455151     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2013.09.023     Document Type: Article
Times cited : (50)

References (44)
  • 2
    • 2542468818 scopus 로고    scopus 로고
    • Hydrogen storage methods
    • Züttel A. Hydrogen storage methods. Naturwissenschaften 2004, 91:157-172.
    • (2004) Naturwissenschaften , vol.91 , pp. 157-172
    • Züttel, A.1
  • 3
    • 84877118075 scopus 로고    scopus 로고
    • Progress in catalytic naphtha reforming process: a review
    • Rahimpour M.R., Jafari M., Iranshahi D. Progress in catalytic naphtha reforming process: a review. Appl Energy 2013, 109:79-93.
    • (2013) Appl Energy , vol.109 , pp. 79-93
    • Rahimpour, M.R.1    Jafari, M.2    Iranshahi, D.3
  • 4
    • 84875104724 scopus 로고    scopus 로고
    • SiC foam monolith catalyst for pressurized adiabatic methane reforming
    • Li C., Xu H., Hou S., Sun J., Meng F., Ma J., et al. SiC foam monolith catalyst for pressurized adiabatic methane reforming. Appl Energy 2013, 107:297-303.
    • (2013) Appl Energy , vol.107 , pp. 297-303
    • Li, C.1    Xu, H.2    Hou, S.3    Sun, J.4    Meng, F.5    Ma, J.6
  • 5
    • 80052266664 scopus 로고    scopus 로고
    • Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature
    • Kwak B.S., Lee J.S., Lee J.S., Choi B.H., Ji M.J., Kang M. Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature. Appl Energy 2011, 88:4366-4375.
    • (2011) Appl Energy , vol.88 , pp. 4366-4375
    • Kwak, B.S.1    Lee, J.S.2    Lee, J.S.3    Choi, B.H.4    Ji, M.J.5    Kang, M.6
  • 6
    • 84884209056 scopus 로고    scopus 로고
    • Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: promotion of hot-electron. Appl Energy 2013 [Available online 29 June 2013].
    • Wang T, Yang Y, Ding M, Liu Q, Ma L. Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: promotion of hot-electron. Appl Energy 2013 [Available online 29 June 2013].
    • Wang, T.1    Yang, Y.2    Ding, M.3    Liu, Q.4    Ma, L.5
  • 7
    • 80053944121 scopus 로고    scopus 로고
    • Fabrication and characteristics of cube-post microreactors for methanol steam reforming
    • Zeng D., Pan M., Wang L., Tang Y. Fabrication and characteristics of cube-post microreactors for methanol steam reforming. Appl Energy 2012, 91:208-213.
    • (2012) Appl Energy , vol.91 , pp. 208-213
    • Zeng, D.1    Pan, M.2    Wang, L.3    Tang, Y.4
  • 8
    • 84872734856 scopus 로고    scopus 로고
    • Experimental study on the performance of hydrogen production from miniature methanol-steam reformer integrated with Swiss-roll type combustor for PEMFC
    • Chein R.Y., Chen Y.C., Chang C.M., Chung J.N. Experimental study on the performance of hydrogen production from miniature methanol-steam reformer integrated with Swiss-roll type combustor for PEMFC. Appl Energy 2013, 105:86-98.
    • (2013) Appl Energy , vol.105 , pp. 86-98
    • Chein, R.Y.1    Chen, Y.C.2    Chang, C.M.3    Chung, J.N.4
  • 9
    • 84871716490 scopus 로고    scopus 로고
    • Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer
    • Perng S.W., Horng R.F., Ku H.W. Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer. Appl Energy 2013, 103:317-327.
    • (2013) Appl Energy , vol.103 , pp. 317-327
    • Perng, S.W.1    Horng, R.F.2    Ku, H.W.3
  • 10
    • 77954072875 scopus 로고    scopus 로고
    • Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design
    • Hsueh C.Y., Chu H.S., Yan W.M., Chen C.H. Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design. Appl Energy 2010, 87:3137-3147.
    • (2010) Appl Energy , vol.87 , pp. 3137-3147
    • Hsueh, C.Y.1    Chu, H.S.2    Yan, W.M.3    Chen, C.H.4
  • 11
    • 34347265255 scopus 로고    scopus 로고
    • A MEMS methanol reformer heated by decomposition of hydrogen peroxide
    • Kim T., Hwang J.S., Kwon S. A MEMS methanol reformer heated by decomposition of hydrogen peroxide. Lab Chip 2007, 7:835-841.
    • (2007) Lab Chip , vol.7 , pp. 835-841
    • Kim, T.1    Hwang, J.S.2    Kwon, S.3
  • 12
    • 84870753167 scopus 로고    scopus 로고
    • Numerical study of methanol-steam reforming and methanol-air catalytic combustion in annulus reactors for hydrogen production
    • Chein R., Chen Y.C., Chung J.N. Numerical study of methanol-steam reforming and methanol-air catalytic combustion in annulus reactors for hydrogen production. Appl Energy 2013, 102:1022-1034.
    • (2013) Appl Energy , vol.102 , pp. 1022-1034
    • Chein, R.1    Chen, Y.C.2    Chung, J.N.3
  • 13
    • 84857011746 scopus 로고    scopus 로고
    • Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system
    • Wijaya W.Y., Kawasaki S., Watanabe H., Okazaki K. Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system. Appl Energy 2012, 94:141-147.
    • (2012) Appl Energy , vol.94 , pp. 141-147
    • Wijaya, W.Y.1    Kawasaki, S.2    Watanabe, H.3    Okazaki, K.4
  • 14
    • 68749096888 scopus 로고    scopus 로고
    • Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell
    • Kim T. Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell. Int J Hydrogen Energy 2009, 34:6790-6798.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 6790-6798
    • Kim, T.1
  • 15
    • 33747265789 scopus 로고    scopus 로고
    • Design, fabrication and testing of a catalytic microreactor for hydrogen production
    • Kim T., Kwon S. Design, fabrication and testing of a catalytic microreactor for hydrogen production. J Micromech Microeng 2006, 16:1752-1760.
    • (2006) J Micromech Microeng , vol.16 , pp. 1752-1760
    • Kim, T.1    Kwon, S.2
  • 17
    • 0001390756 scopus 로고    scopus 로고
    • Partial oxidation of methanol over supported palladium catalysts
    • Cubeiro M.L., Fierro J.L.G. Partial oxidation of methanol over supported palladium catalysts. Appl Catal A-Gen 1998, 168:307-322.
    • (1998) Appl Catal A-Gen , vol.168 , pp. 307-322
    • Cubeiro, M.L.1    Fierro, J.L.G.2
  • 18
    • 0037998923 scopus 로고    scopus 로고
    • Hydrogen production from methanol using corona discharges
    • Liu X.Z., Liu C.J., Eliasson B. Hydrogen production from methanol using corona discharges. Chin Chem Lett 2003, 14:631-633.
    • (2003) Chin Chem Lett , vol.14 , pp. 631-633
    • Liu, X.Z.1    Liu, C.J.2    Eliasson, B.3
  • 19
    • 0034335780 scopus 로고    scopus 로고
    • Generation of hydrogen from methanol in a dielectric-barrier discharge plasma system
    • Tanabe S., Matsuguma S., Okitsu K., Matsumoto H., Matsumoto H. Generation of hydrogen from methanol in a dielectric-barrier discharge plasma system. Chem Lett 2000, 29:1116-1117.
    • (2000) Chem Lett , vol.29 , pp. 1116-1117
    • Tanabe, S.1    Matsuguma, S.2    Okitsu, K.3    Matsumoto, H.4    Matsumoto, H.5
  • 20
    • 77956175991 scopus 로고    scopus 로고
    • Production of hydrogen by plasma-reforming of methanol
    • Wang Y.F., You Y.S., Tsai C.H., Wang L.C. Production of hydrogen by plasma-reforming of methanol. Int J Hydrogen Energy 2010, 35:9637-9640.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 9637-9640
    • Wang, Y.F.1    You, Y.S.2    Tsai, C.H.3    Wang, L.C.4
  • 21
    • 84862184372 scopus 로고    scopus 로고
    • Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor
    • Taghvaei H., Shirazi M.M., Hooshmand N., Rahimpour M.R., Jahanmiri A. Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor. Appl Energy 2012, 98:3-10.
    • (2012) Appl Energy , vol.98 , pp. 3-10
    • Taghvaei, H.1    Shirazi, M.M.2    Hooshmand, N.3    Rahimpour, M.R.4    Jahanmiri, A.5
  • 22
    • 84859435947 scopus 로고    scopus 로고
    • Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma
    • Reddy E.L., Biju V.M., Subrahmanyam C. Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Appl Energy 2012, 95:87-92.
    • (2012) Appl Energy , vol.95 , pp. 87-92
    • Reddy, E.L.1    Biju, V.M.2    Subrahmanyam, C.3
  • 23
    • 84871813825 scopus 로고    scopus 로고
    • Direct conversion of liquid natural gas (LNG) to syngas and ethylene using non-equilibrium pulsed discharge
    • Ding M., Hayakawa T., Zeng C., Jin Y., Zhang Q., Wang T., et al. Direct conversion of liquid natural gas (LNG) to syngas and ethylene using non-equilibrium pulsed discharge. Appl Energy 2013, 104:777-782.
    • (2013) Appl Energy , vol.104 , pp. 777-782
    • Ding, M.1    Hayakawa, T.2    Zeng, C.3    Jin, Y.4    Zhang, Q.5    Wang, T.6
  • 25
    • 77949851485 scopus 로고    scopus 로고
    • Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field
    • Sekine Y., Haraguchi M., Tomioka M., Matsukata M., Kikuchi E. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field. J Phys Chem A 2010, 114:3824-3833.
    • (2010) J Phys Chem A , vol.114 , pp. 3824-3833
    • Sekine, Y.1    Haraguchi, M.2    Tomioka, M.3    Matsukata, M.4    Kikuchi, E.5
  • 26
    • 84863636601 scopus 로고    scopus 로고
    • Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature
    • Tu X., Whitehead J.C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl Catal B-Environ 2012, 125:439-448.
    • (2012) Appl Catal B-Environ , vol.125 , pp. 439-448
    • Tu, X.1    Whitehead, J.C.2
  • 27
    • 84878840711 scopus 로고    scopus 로고
    • Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process
    • Fujishima H., Takekoshi K., Kuroki T., Tanaka A., Otsuka K., Okubo M. Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process. Appl Energy 2013, 111:394-400.
    • (2013) Appl Energy , vol.111 , pp. 394-400
    • Fujishima, H.1    Takekoshi, K.2    Kuroki, T.3    Tanaka, A.4    Otsuka, K.5    Okubo, M.6
  • 28
    • 84876729038 scopus 로고    scopus 로고
    • Plasma-catalyst hybrid methanol-steam reforming for hydrogen production
    • Lee D.H., Kim T. Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int J Hydrogen Energy 2013, 38:6039-6043.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 6039-6043
    • Lee, D.H.1    Kim, T.2
  • 29
    • 0024681561 scopus 로고
    • A free-space method for measurement of dielectric constants and loss Tangents at microwave frequencies
    • Ghodgaonkar D.K., Varadan V.V., Varadan V.K. A free-space method for measurement of dielectric constants and loss Tangents at microwave frequencies. IEEE T Instrum Meas 1989, 37:789-793.
    • (1989) IEEE T Instrum Meas , vol.37 , pp. 789-793
    • Ghodgaonkar, D.K.1    Varadan, V.V.2    Varadan, V.K.3
  • 30
    • 0036534890 scopus 로고    scopus 로고
    • 3 catalyst: a kinetic analysis and strategies for suppression of CO formation
    • 3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 2002, 106:249-257.
    • (2002) J Power Sources , vol.106 , pp. 249-257
    • Agrell, J.1    Birgersson, H.2    Boutonnet, M.3
  • 34
    • 84873441393 scopus 로고    scopus 로고
    • Mapping plasma chemistry in hydrocarbon fuel processing processes
    • Lee D.H., Kim K., Song Y., Kang W.S., Jo S. Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma P 2013, 33:249-269.
    • (2013) Plasma Chem Plasma P , vol.33 , pp. 249-269
    • Lee, D.H.1    Kim, K.2    Song, Y.3    Kang, W.S.4    Jo, S.5
  • 35
    • 84929752052 scopus 로고    scopus 로고
    • Cambridge University Press, New York
    • Fridman A.M. Plasma chemistry 2008, Cambridge University Press, New York.
    • (2008) Plasma chemistry
    • Fridman, A.M.1
  • 36
    • 2442565477 scopus 로고    scopus 로고
    • Measurements of electron energy by emission spectroscopy in pulsed corona and dielectric barrier discharges
    • Kim U., Hong S.H., Cha M.S., Song Y., Kim S.J. Measurements of electron energy by emission spectroscopy in pulsed corona and dielectric barrier discharges. J Adv Oxid Technol 2003, 6:17-22.
    • (2003) J Adv Oxid Technol , vol.6 , pp. 17-22
    • Kim, U.1    Hong, S.H.2    Cha, M.S.3    Song, Y.4    Kim, S.J.5
  • 37
    • 0035934538 scopus 로고    scopus 로고
    • Reactivity of vibrationally excited methane on nickel surfaces
    • Halonen L., Bernasek S.L., Nesbitt D.J. Reactivity of vibrationally excited methane on nickel surfaces. J Chem Phys 2001, 115:5611-5619.
    • (2001) J Chem Phys , vol.115 , pp. 5611-5619
    • Halonen, L.1    Bernasek, S.L.2    Nesbitt, D.J.3
  • 38
    • 0033522807 scopus 로고    scopus 로고
    • Enhanced reactivity of highly vibrationally excited molecules on metal surfaces
    • Hou H., Huang Y., Gulding S.J., Rettner C.T., Auerbach D.J., Wodtke A.M. Enhanced reactivity of highly vibrationally excited molecules on metal surfaces. Science 1999, 284:1647-1650.
    • (1999) Science , vol.284 , pp. 1647-1650
    • Hou, H.1    Huang, Y.2    Gulding, S.J.3    Rettner, C.T.4    Auerbach, D.J.5    Wodtke, A.M.6
  • 39
    • 0030570290 scopus 로고    scopus 로고
    • Influence of molecular vibrations on dissociative adsorption
    • Gross A., Scheffler M. Influence of molecular vibrations on dissociative adsorption. Chem Phys Lett 1996, 256:417-423.
    • (1996) Chem Phys Lett , vol.256 , pp. 417-423
    • Gross, A.1    Scheffler, M.2
  • 40
    • 35348940163 scopus 로고    scopus 로고
    • Kinetic analysis of the catalyst and nonthermal plasma hybrid reaction for methane steam reforming
    • Nozaki T., Tsukijhara H., Fukui W., Okazaki K. Kinetic analysis of the catalyst and nonthermal plasma hybrid reaction for methane steam reforming. Energy Fuels 2007, 21:2525-2530.
    • (2007) Energy Fuels , vol.21 , pp. 2525-2530
    • Nozaki, T.1    Tsukijhara, H.2    Fukui, W.3    Okazaki, K.4
  • 41
    • 0022806379 scopus 로고
    • Heterogeneous catalysis in low-pressure plasmas
    • Gicquel A., Cavadias S., Amouroux J. Heterogeneous catalysis in low-pressure plasmas. J Phys D Appl Phys 1986, 19:2013-2042.
    • (1986) J Phys D Appl Phys , vol.19 , pp. 2013-2042
    • Gicquel, A.1    Cavadias, S.2    Amouroux, J.3
  • 42
    • 0842326640 scopus 로고    scopus 로고
    • Dissociation of vibrationally excited methane on Ni catalyst Part 1. Application to methane steam reforming
    • Nozaki T., Muto N., Kado S., Okazaki K. Dissociation of vibrationally excited methane on Ni catalyst Part 1. Application to methane steam reforming. Catal Today 2004, 89:57-65.
    • (2004) Catal Today , vol.89 , pp. 57-65
    • Nozaki, T.1    Muto, N.2    Kado, S.3    Okazaki, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.