-
2
-
-
36449006822
-
-
A. Sinha, J. D. Thoernke, F. Crim, J. Chem. Phys. 96, 372 (1992); D. W. Arnold, M. Korolik, C. Wittig, H. Reisler, Chem. Phys. Lett. 282, 313 (1998); C. A. Michaels, A. S. Mullin, J. Park, J. Z. Chou, G. W. Flynn, J. Chem. Phys. 108, 2744 (1998); R. L. Miller et al., Science 265, 1831 (1994).
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 372
-
-
Sinha, A.1
Thoernke, J.D.2
Crim, F.3
-
3
-
-
0032535872
-
-
A. Sinha, J. D. Thoernke, F. Crim, J. Chem. Phys. 96, 372 (1992); D. W. Arnold, M. Korolik, C. Wittig, H. Reisler, Chem. Phys. Lett. 282, 313 (1998); C. A. Michaels, A. S. Mullin, J. Park, J. Z. Chou, G. W. Flynn, J. Chem. Phys. 108, 2744 (1998); R. L. Miller et al., Science 265, 1831 (1994).
-
(1998)
Chem. Phys. Lett.
, vol.282
, pp. 313
-
-
Arnold, D.W.1
Korolik, M.2
Wittig, C.3
Reisler, H.4
-
4
-
-
0000801168
-
-
A. Sinha, J. D. Thoernke, F. Crim, J. Chem. Phys. 96, 372 (1992); D. W. Arnold, M. Korolik, C. Wittig, H. Reisler, Chem. Phys. Lett. 282, 313 (1998); C. A. Michaels, A. S. Mullin, J. Park, J. Z. Chou, G. W. Flynn, J. Chem. Phys. 108, 2744 (1998); R. L. Miller et al., Science 265, 1831 (1994).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 2744
-
-
Michaels, C.A.1
Mullin, A.S.2
Park, J.3
Chou, J.Z.4
Flynn, G.W.5
-
5
-
-
0028564064
-
-
A. Sinha, J. D. Thoernke, F. Crim, J. Chem. Phys. 96, 372 (1992); D. W. Arnold, M. Korolik, C. Wittig, H. Reisler, Chem. Phys. Lett. 282, 313 (1998); C. A. Michaels, A. S. Mullin, J. Park, J. Z. Chou, G. W. Flynn, J. Chem. Phys. 108, 2744 (1998); R. L. Miller et al., Science 265, 1831 (1994).
-
(1994)
Science
, vol.265
, pp. 1831
-
-
Miller, R.L.1
-
6
-
-
84912973649
-
-
For example, see C. T. Rettner, H. E. Pfnür, H. Stein, D. J. Auerbach, J. Vac. Sci. Technol. A6, 899 (1988).
-
(1988)
J. Vac. Sci. Technol.
, vol.A6
, pp. 899
-
-
Rettner, C.T.1
Pfnür, H.E.2
Stein, H.3
Auerbach, D.J.4
-
7
-
-
0000868916
-
-
For example, see M. Gostein, H. Parhikhteh, G. O. Sitz, Phys. Rev. Lett. 75, 342 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 342
-
-
Gostein, M.1
Parhikhteh, H.2
Sitz, G.O.3
-
11
-
-
0345138669
-
-
note
-
1/2(5,0) transition for the pump step. For NO in a supersonic expansion (rotational temperature ∼5 K), it was possible to transfer ∼0.2% of the total population in the illuminated part of the molecular beam into the v = 15, J = 2.5 state.
-
-
-
-
12
-
-
0031552895
-
-
M. Drabbels, A. M. Wodtke, M.-B. Yang, M. H. Alexander, J. Phys. Chem. 101, 6463 (1997).
-
(1997)
J. Phys. Chem.
, vol.101
, pp. 6463
-
-
Drabbels, M.1
Wodtke, A.M.2
Yang, M.-B.3
Alexander, M.H.4
-
13
-
-
0345138668
-
-
note
-
pump was generated as follows. The output of an argon ion (Spectra Physics 171) pumped single-mode ring dye laser (Coherent CR-699) operated with Rhodamine 6G was pulse-amplified in a homemade three-stage amplifier chain, filled with a mixture of Rhodamine 610 and Rhodamine 640 dyes. The amplifier cuvettes were pumped by a frequency-doubled, Q-switched, injection-seeded Nd-yttrium-aluminum-garnet laser (Continuum Powerlite 7010-IS) with a pulse energy of 400 mJ at 532 nm and a pulse duration of ∼5 ns. The amplified visible radiation was frequency-doubled in a KDP crystal to yield 15 mJ of ultraviolet light around 300 nm. After passing a λ/2 plate, the doubled and residual fundamental radiation were frequency-summed in a BBO crystal (length 1 cm) to yield light near 198 nm with a pulse energy of typically 0.5 to 1.0 mJ and a near-Fourier transform limited bandwidth of less than 150 MHz.
-
-
-
-
14
-
-
0344708152
-
-
note
-
A XeCl pumped dye laser system (Lambda Physik EMG200MSC/FL3002) was used for the dump transitions.
-
-
-
-
15
-
-
0344708149
-
-
note
-
The loss of side fluorescence to the photomultiplier tube due to enhanced stimulated emission along the dump laser propagation axis is referred to as a fluorescence dip. See, for example, (7).
-
-
-
-
16
-
-
0344708150
-
-
note
-
Extreme care was taken to ensure that there were no impurities in the beam that might oxidize the surface.
-
-
-
-
18
-
-
0344708146
-
-
note
-
2O (which desorbs) + O, which is known to be important at low surface temperatures when the NO coverage is high.
-
-
-
-
19
-
-
21544433076
-
-
The ratio of AES signals for Cu and O on this surface revealed a ratio of O adatom to surface Cu atom of ∼1:3. This relied on a calibration of the AES response [F. H. P. M. Habraken, E. P. Kieffer, G. A. Bootsma, Surf. Sci. 83, 45 (1979)].
-
(1979)
Surf. Sci.
, vol.83
, pp. 45
-
-
Habraken, F.H.P.M.1
Kieffer, E.P.2
Bootsma, G.A.3
-
21
-
-
0344708147
-
-
note
-
+ state. For the experiments reported here, neither step of the REMPI process was saturated.
-
-
-
-
23
-
-
0345138666
-
-
note
-
net was normalized to the square of the probe laser power.
-
-
-
-
24
-
-
0004161642
-
-
Wiley-Interscience, New York
-
21 branch]. Energy levels of the ground state are from C. Amiot, J. Mol. Spectrosc. 94, 150 (1982). Energy levels for the A state derive from R. Engleman Jr., P. E. Rouse, H. M. Peek, V. D. Baiamonte, Los Alamos Science Lab Report LA-4364 (1970); R. Engleman Jr. and P. E. Rouse, J. Mol. Spectrosc. 37, 240 (1971). The rotational state populations were modeled by a Boltzmann distribution.
-
(1987)
Angular Momentum
, pp. 314
-
-
Zare, R.N.1
-
25
-
-
0000387214
-
-
21 branch]. Energy levels of the ground state are from C. Amiot, J. Mol. Spectrosc. 94, 150 (1982). Energy levels for the A state derive from R. Engleman Jr., P. E. Rouse, H. M. Peek, V. D. Baiamonte, Los Alamos Science Lab Report LA-4364 (1970); R. Engleman Jr. and P. E. Rouse, J. Mol. Spectrosc. 37, 240 (1971). The rotational state populations were modeled by a Boltzmann distribution.
-
(1982)
J. Mol. Spectrosc.
, vol.94
, pp. 150
-
-
Amiot, C.1
-
26
-
-
0343184932
-
-
21 branch]. Energy levels of the ground state are from C. Amiot, J. Mol. Spectrosc. 94, 150 (1982). Energy levels for the A state derive from R. Engleman Jr., P. E. Rouse, H. M. Peek, V. D. Baiamonte, Los Alamos Science Lab Report LA-4364 (1970); R. Engleman Jr. and P. E. Rouse, J. Mol. Spectrosc. 37, 240 (1971). The rotational state populations were modeled by a Boltzmann distribution.
-
(1970)
Los Alamos Science Lab Report LA-4364
-
-
Engleman R., Jr.1
Rouse, P.E.2
Peek, H.M.3
Baiamonte, V.D.4
-
27
-
-
0001304188
-
-
21 branch]. Energy levels of the ground state are from C. Amiot, J. Mol. Spectrosc. 94, 150 (1982). Energy levels for the A state derive from R. Engleman Jr., P. E. Rouse, H. M. Peek, V. D. Baiamonte, Los Alamos Science Lab Report LA-4364 (1970); R. Engleman Jr. and P. E. Rouse, J. Mol. Spectrosc. 37, 240 (1971). The rotational state populations were modeled by a Boltzmann distribution.
-
(1971)
J. Mol. Spectrosc.
, vol.37
, pp. 240
-
-
Engleman R., Jr.1
Rouse, P.E.2
-
28
-
-
0344708144
-
-
note
-
-2.
-
-
-
-
29
-
-
0344276147
-
-
note
-
The following channels were observed (v = 15 → 13, 15 → 10, 13 → 12, 13 → 10, 13 → 9, 12 → 9).
-
-
-
-
30
-
-
0344708140
-
-
note
-
Because of the difficulty of ensuring an absolutely oxygen-free surface and the high sensitivity of the REMPI signal to oxygen coverage, we consider this number to be a lower limit to the true value. The error bars represent one standard deviation.
-
-
-
-
31
-
-
0344708142
-
-
note
-
Temperatures between 300 and 500 K were studied. Two molecular beams were compared with collision energies of 29 and 67 kJ/mol.
-
-
-
-
32
-
-
0030219656
-
-
C. T. Rettner, D. J. Auerbach, J. C. Tully, A. W. Kleyn, J. Phys. Chem. 100, 13021 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 13021
-
-
Rettner, C.T.1
Auerbach, D.J.2
Tully, J.C.3
Kleyn, A.W.4
-
33
-
-
0001478448
-
-
J. C. Polanyi, Acc. Chem. Res. 5, 161 (1972); _ and W. H. Wong, J. Chem. Phys. 51, 1439 (1969).
-
(1972)
Acc. Chem. Res.
, vol.5
, pp. 161
-
-
Polanyi, J.C.1
-
34
-
-
0001478448
-
-
J. C. Polanyi, Acc. Chem. Res. 5, 161 (1972); _ and W. H. Wong, J. Chem. Phys. 51, 1439 (1969).
-
(1969)
J. Chem. Phys.
, vol.51
, pp. 1439
-
-
Wong, W.H.1
-
35
-
-
0344708137
-
-
note
-
Supported by the U.S. Air Force Office of Scientific Research (grant F49620-95-1-0234) and the U.S. Department of Energy Office of Basic Energy Sciences (grant DE-FG03-94ER14492/A000).
-
-
-
|