메뉴 건너뛰기




Volumn 36, Issue 10, 2013, Pages 1025-1032

Development of a novel regulatory pharmacovigilance prioritisation system: An evaluation of its performance at the UK Medicines and Healthcare products Regulatory Agency

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DRUG SAFETY; DRUG SURVEILLANCE PROGRAM; GOVERNMENT REGULATION; HEALTH CARE ORGANIZATION; PILOT STUDY; PRIORITY JOURNAL; RESOURCE ALLOCATION; SCORING SYSTEM; UNITED KINGDOM;

EID: 84885436268     PISSN: 01145916     EISSN: 11791942     Source Type: Journal    
DOI: 10.1007/s40264-013-0081-3     Document Type: Article
Times cited : (11)

References (10)
  • 2
    • 84885440689 scopus 로고    scopus 로고
    • Signal detection in the UK: The use of quantitative methods at the MHRA [Abstract]
    • 10.2165/00002018-200730100-00120
    • Ekins-Daukes S, Kauser S, Wise L. Signal detection in the UK: the use of quantitative methods at the MHRA [Abstract]. Drug Saf. 2007;30(10):963.
    • (2007) Drug Saf , vol.30 , Issue.10 , pp. 963
    • Ekins-Daukes, S.1    Kauser, S.2    Wise, L.3
  • 3
    • 0035700740 scopus 로고    scopus 로고
    • Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
    • 11828828 10.1002/pds.677 1:STN:280:DC%2BD38%2FpvFWqsA%3D%3D
    • Evans SJW, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10:483-6.
    • (2001) Pharmacoepidemiol Drug Saf , vol.10 , pp. 483-486
    • Evans, S.J.W.1    Waller, P.C.2    Davis, S.3
  • 4
    • 0031871338 scopus 로고    scopus 로고
    • A Bayesian neural network method for adverse drug reaction signal generation
    • 9696956 10.1007/s002280050466 1:CAS:528:DyaK1cXktFKlsL4%3D
    • Bate A, Linquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54:315-21.
    • (1998) Eur J Clin Pharmacol , vol.54 , pp. 315-321
    • Bate, A.1    Linquist, M.2    Edwards, I.R.3
  • 5
    • 0037256026 scopus 로고    scopus 로고
    • Application of quantitative signal detection in the Dutch spontaneous reporting system for adverse drug reactions
    • 12650632 10.2165/00002018-200326050-00001
    • van Puijenbroek EP, Diemont WL, van Grootheest K. Application of quantitative signal detection in the Dutch spontaneous reporting system for adverse drug reactions. Drug Saf. 2003;26(5):293-301.
    • (2003) Drug Saf , vol.26 , Issue.5 , pp. 293-301
    • Van Puijenbroek, E.P.1    Diemont, W.L.2    Van Grootheest, K.3
  • 6
    • 34447115729 scopus 로고    scopus 로고
    • Signal detection in the pharmaceutical industry: Integrating clinical and computational approaches
    • 17604418 10.2165/00002018-200730070-00012
    • Hauben M. Signal detection in the pharmaceutical industry: integrating clinical and computational approaches. Drug Saf. 2007;30(7):627-30.
    • (2007) Drug Saf , vol.30 , Issue.7 , pp. 627-630
    • Hauben, M.1
  • 7
    • 26444499635 scopus 로고    scopus 로고
    • Impact analysis of signals detected from spontaneous adverse drug reaction reporting data
    • 16180935 10.2165/00002018-200528100-00002
    • Waller P, Heeley E, Moseley J. Impact analysis of signals detected from spontaneous adverse drug reaction reporting data. Drug Saf. 2005;28(10):843-50.
    • (2005) Drug Saf , vol.28 , Issue.10 , pp. 843-850
    • Waller, P.1    Heeley, E.2    Moseley, J.3
  • 8
    • 26444549922 scopus 로고    scopus 로고
    • Testing and implementing signal impact analysis in a regulatory setting
    • 16180939 10.2165/00002018-200528100-00006
    • Heeley E, Waller P, Moseley J. Testing and implementing signal impact analysis in a regulatory setting. Drug Saf. 2005;28(10):901-6.
    • (2005) Drug Saf , vol.28 , Issue.10 , pp. 901-906
    • Heeley, E.1    Waller, P.2    Moseley, J.3
  • 9
    • 0038931405 scopus 로고    scopus 로고
    • Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
    • DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999;53:177-90.
    • (1999) Am Stat , vol.53 , pp. 177-190
    • Dumouchel, W.1
  • 10
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • 843571 10.2307/2529310 1:STN:280:DyaE2s7jsFWqtA%3D%3D
    • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-74.
    • (1977) Biometrics , vol.33 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.