메뉴 건너뛰기




Volumn 53, Issue , 2013, Pages 90-99

Boosting the K-Nearest-Neighborhood based incremental collaborative filtering

Author keywords

Collaborative filtering; Incremental recommendation; K Nearest Neighborhood; Rating similarity; Recommender system

Indexed keywords

AUTOMATICALLY MATCH; INCREMENTAL COLLABORATIVE FILTERING; INCREMENTAL RECOMMENDATION; INCREMENTAL UPDATES; K-NEAREST-NEIGHBORHOOD; PREDICTION ACCURACY; RATING SIMILARITIES; STORAGE COMPLEXITY;

EID: 84885422427     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.08.016     Document Type: Article
Times cited : (61)

References (36)
  • 2
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • ACM Berkeley, California, United States
    • J. Herlocker, J. Konstan, A. Borchers, and J. Riedl An algorithmic framework for performing collaborative filtering 22nd ACM SIGIR 1999 ACM Berkeley, California, United States 230 237
    • (1999) 22nd ACM SIGIR , pp. 230-237
    • Herlocker, J.1    Konstan, J.2    Borchers, A.3    Riedl, J.4
  • 3
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • J. Herlocker, J. Konstan, and J. Riedl An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms Information Retrieval 5 2002 287 310
    • (2002) Information Retrieval , vol.5 , pp. 287-310
    • Herlocker, J.1    Konstan, J.2    Riedl, J.3
  • 4
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius, and A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions IEEE Transactions on Knowledge and Data Engineering 17 2005 734 749
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 5
    • 67349271700 scopus 로고    scopus 로고
    • Collaborative filtering adapted to recommender systems of e-learning
    • J. Bobadilla, F. Serradilla, and A. Hernando Collaborative filtering adapted to recommender systems of e-learning Knowledge-Based Systems 22 2009 261 265
    • (2009) Knowledge-Based Systems , vol.22 , pp. 261-265
    • Bobadilla, J.1    Serradilla, F.2    Hernando, A.3
  • 6
    • 84868655830 scopus 로고    scopus 로고
    • A trust-semantic fusion-based recommendation approach for e-business applications
    • Q. Shambour, and J. Lu A trust-semantic fusion-based recommendation approach for e-business applications Decision Support Systems 54 1 2012 768 780
    • (2012) Decision Support Systems , vol.54 , Issue.1 , pp. 768-780
    • Shambour, Q.1    Lu, J.2
  • 8
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann Latent semantic models for collaborative filtering ACM Transactions On Information Systems 22 2004 89 115
    • (2004) ACM Transactions on Information Systems , vol.22 , pp. 89-115
    • Hofmann, T.1
  • 14
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky Matrix factorization techniques for recommender systems IEEE Computer 42 2009 30 37
    • (2009) IEEE Computer , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 15
    • 80052883059 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, Springer US New York, United States
    • Y. Koren, and R. Bell Advances in collaborative filtering F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, Recommender Systems Handbook 2011 Springer US New York, United States 145 186
    • (2011) Recommender Systems Handbook , pp. 145-186
    • Koren, Y.1    Bell, R.2
  • 16
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • Morgan Kaufmann Publishers Inc. San Francisco, United States
    • J. Breese, D. Heckerman, and C. Kadie Empirical analysis of predictive algorithms for collaborative filtering 14th International Conference on Uncertainty in Artificial Intelligence 1998 Morgan Kaufmann Publishers Inc. San Francisco, United States 43 52
    • (1998) 14th International Conference on Uncertainty in Artificial Intelligence , pp. 43-52
    • Breese, J.1    Heckerman, D.2    Kadie, C.3
  • 19
    • 84867798465 scopus 로고    scopus 로고
    • Incremental collaborative filtering based on mahalanobis distance and fuzzy membership for recommender systems
    • M. Komkhaoa, J. Lu, Z. Lia, and W.A. Halanga Incremental collaborative filtering based on mahalanobis distance and fuzzy membership for recommender systems International Journal of General Systems 42 2013 41 66
    • (2013) International Journal of General Systems , vol.42 , pp. 41-66
    • Komkhaoa, M.1    Lu, J.2    Lia, Z.3    Halanga, W.A.4
  • 21
    • 84875946162 scopus 로고    scopus 로고
    • A hybrid fuzzy-based personalized recommender system for telecom products/services
    • Z. Zhang, H. Lin, K. Liu, D. Wu, G. Zhang, and J. Lu A hybrid fuzzy-based personalized recommender system for telecom products/services Information Sciences 235 2013 117 129
    • (2013) Information Sciences , vol.235 , pp. 117-129
    • Zhang, Z.1    Lin, H.2    Liu, K.3    Wu, D.4    Zhang, G.5    Lu, J.6
  • 22
    • 81855221689 scopus 로고    scopus 로고
    • Generalization of recommender systems: Collaborative filtering extended to groups of users and restricted to groups of items
    • J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal Generalization of recommender systems: collaborative filtering extended to groups of users and restricted to groups of items Expert Systems with Applications 39 2012 172 186
    • (2012) Expert Systems with Applications , vol.39 , pp. 172-186
    • Bobadilla, J.1    Ortega, F.2    Hernando, A.3    Bernal, J.4
  • 26
    • 63449105336 scopus 로고    scopus 로고
    • Online-updating regularized kernel matrix factorization models for large-scale recommender systems
    • ACM Lausanne, Switzerland
    • S. Rendle, and L. Schmidt-Thieme Online-updating regularized kernel matrix factorization models for large-scale recommender systems Proceedings of the 2nd ACM Conference on Recommender Systems 2008 ACM Lausanne, Switzerland 251 258
    • (2008) Proceedings of the 2nd ACM Conference on Recommender Systems , pp. 251-258
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 27
    • 84855912132 scopus 로고    scopus 로고
    • Incremental collaborative filtering recommender based on regularized matrix factorization
    • X. Luo, Y.-N. Xia, and Q.-S. Zhu Incremental collaborative filtering recommender based on regularized matrix factorization Knowledge-Based Systems 27 2012 271 280
    • (2012) Knowledge-Based Systems , vol.27 , pp. 271-280
    • Luo, X.1    Xia, Y.-N.2    Zhu, Q.-S.3
  • 29
    • 71049120669 scopus 로고    scopus 로고
    • Item-based and user-based incremental collaborative filtering for web recommendations
    • Springer Verlag Berlin Aveiro, Portugal
    • C. Miranda, and A. Jorge Item-based and user-based incremental collaborative filtering for web recommendations Proceedings of the 14th Portuguese Conference on Artificial Intelligence 2009 Springer Verlag Berlin Aveiro, Portugal 673 684
    • (2009) Proceedings of the 14th Portuguese Conference on Artificial Intelligence , pp. 673-684
    • Miranda, C.1    Jorge, A.2
  • 31
    • 34548236272 scopus 로고    scopus 로고
    • One-and-only item recommendation with fuzzy logic techniques
    • C. Cornelis, J. Lu, X. Guo, and G. Zhang One-and-only item recommendation with fuzzy logic techniques Information Sciences 177 2007 4906 4921
    • (2007) Information Sciences , vol.177 , pp. 4906-4921
    • Cornelis, C.1    Lu, J.2    Guo, X.3    Zhang, G.4
  • 32
    • 73749086533 scopus 로고    scopus 로고
    • Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation
    • H.-N. Kim, A.-T. Ji, I. Ha, and G.-S. Jo Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation Electronic Commerce Research and Applications 9 2010 73 83
    • (2010) Electronic Commerce Research and Applications , vol.9 , pp. 73-83
    • Kim, H.-N.1    Ji, A.-T.2    Ha, I.3    Jo, G.-S.4
  • 33
    • 84870060218 scopus 로고    scopus 로고
    • Towards a user based recommendation strategy for digital ecosystems
    • V. Moscato, A. Picariello, and A.M. Rinaldi Towards a user based recommendation strategy for digital ecosystems Knowledge-Based Systems 37 2013 165 175
    • (2013) Knowledge-Based Systems , vol.37 , pp. 165-175
    • Moscato, V.1    Picariello, A.2    Rinaldi, A.M.3
  • 34
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • L.R. Dice Measures of the amount of ecologic association between species Ecology 26 1945 297 302
    • (1945) Ecology , vol.26 , pp. 297-302
    • Dice, L.R.1
  • 36
    • 79955164643 scopus 로고    scopus 로고
    • Evaluating recommendation systems
    • F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, Springer US New York, United States
    • G. Shani, and A. Gunawardana Evaluating recommendation systems F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, Recommender Systems Handbook 2011 Springer US New York, United States 257 297
    • (2011) Recommender Systems Handbook , pp. 257-297
    • Shani, G.1    Gunawardana, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.