메뉴 건너뛰기




Volumn 48, Issue 5, 2013, Pages 663-691

A New Procedure to Test Mediation With Missing Data Through Nonparametric Bootstrapping and Multiple Imputation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84885044013     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273171.2013.816235     Document Type: Article
Times cited : (54)

References (50)
  • 1
    • 84885025235 scopus 로고    scopus 로고
    • Handling missing data by maximum likelihood
    • Paper presented at the SAS global forum, Orlando, FL, Retrieved from
    • Allison, P. D. Handling missing data by maximum likelihood. Paper presented at the SAS global forum. Orlando, FL. Retrieved from http://support.sas.com/resources/papers/proceedings12/312-2012.pdf
    • Allison, P.D.1
  • 2
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • In: Marcoulides G. A., Schumacker R. E., editors Mahwah, NJ, Mahwah, NJ,: Erlbaum
    • Arbuckle, J. L. 1996. " Full information estimation in the presence of incomplete data. ". In Advanced structural equation modeling: Issues and techniques, Edited by: Marcoulides, G. A. and Schumacker, R. E. 243 - 277. Mahwah, NJ: Erlbaum.
    • (1996) Advanced structural equation modeling: Issues and techniques , pp. 243-277
    • Arbuckle, J.L.1
  • 5
    • 0023020183 scopus 로고
    • The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations
    • Baron, R. M. and Kenny, D. A. 1986. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51: 1173 - 1182.
    • (1986) Journal of Personality and Social Psychology , vol.51 , pp. 1173-1182
    • Baron, R.M.1    Kenny, D.A.2
  • 6
    • 77955902330 scopus 로고    scopus 로고
    • Assessing mediational models: Testing and interval estimation for indirect effects
    • Biesanz, J. C., Falk, C. and Savalei, V. 2010. Assessing mediational models: Testing and interval estimation for indirect effects. Multivariate Behavioral Research, 45: 661 - 701.
    • (2010) Multivariate Behavioral Research , vol.45 , pp. 661-701
    • Biesanz, J.C.1    Falk, C.2    Savalei, V.3
  • 7
    • 84935506926 scopus 로고
    • Direct and indirect effects: Classical and bootstrap estimates of variability
    • Bollen, K. A. and Stine, R. 1990. Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20: 115 - 140.
    • (1990) Sociological Methodology , vol.20 , pp. 115-140
    • Bollen, K.A.1    Stine, R.2
  • 8
    • 0034657861 scopus 로고    scopus 로고
    • Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians
    • Carpenter, J. and Bithell, J. 2000. Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians. Statistics in Medicine, 19: 1141 - 1164.
    • (2000) Statistics in Medicine , vol.19 , pp. 1141-1164
    • Carpenter, J.1    Bithell, J.2
  • 9
    • 0034736417 scopus 로고    scopus 로고
    • A simple method for converting an odds ratio to effect size for use in meta-analysis
    • Chinn, S. 2000. A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19: 3127 - 3131.
    • (2000) Statistics in Medicine , vol.19 , pp. 3127-3131
    • Chinn, S.1
  • 10
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L. and Kam, C. M. 2001. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6: 330 - 351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 11
    • 0000713911 scopus 로고    scopus 로고
    • Bootstrap confidence intervals
    • DiCiccio, T. J. and Efron, B. 1996. Bootstrap confidence intervals. Statistical Science, 11: 189 - 228.
    • (1996) Statistical Science , vol.11 , pp. 189-228
    • DiCiccio, T.J.1    Efron, B.2
  • 12
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. 1979. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7 (1): 1 - 26.
    • (1979) The Annals of Statistics , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 15
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
    • Enders, C. K. 2001. The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6: 352 - 370.
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 17
    • 79952612356 scopus 로고    scopus 로고
    • Missing not at random models for latent growth curve analyses
    • Enders, C. K. 2011. Missing not at random models for latent growth curve analyses. Psychological Methods, 16: 1 - 16.
    • (2011) Psychological Methods , vol.16 , pp. 1-16
    • Enders, C.K.1
  • 18
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K. and Bandalos, D. 2001. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8: 430 - 457.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.2
  • 19
    • 0001885793 scopus 로고    scopus 로고
    • Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models
    • Finch, J. F., West, S. G. and MacKinnon, D. P. 1997. Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models. Structural Equation Modeling, 4: 87 - 107.
    • (1997) Structural Equation Modeling , vol.4 , pp. 87-107
    • Finch, J.F.1    West, S.G.2    MacKinnon, D.P.3
  • 20
    • 34250283902 scopus 로고
    • A method for simulating nonnormal distributions
    • Fleishman, A. I. 1978. A method for simulating nonnormal distributions. Psychometrika, 43: 521 - 532.
    • (1978) Psychometrika , vol.43 , pp. 521-532
    • Fleishman, A.I.1
  • 21
    • 84857244266 scopus 로고    scopus 로고
    • A comparison of item-level and scale-level multiple imputation for questionnaire batteries
    • Gottschall, A. C., West, S. G. and Enders, C. K. 2012. A comparison of item-level and scale-level multiple imputation for questionnaire batteries. Multivariate Behavioral Research, 47: 1 - 25.
    • (2012) Multivariate Behavioral Research , vol.47 , pp. 1-25
    • Gottschall, A.C.1    West, S.G.2    Enders, C.K.3
  • 22
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • Graham, J. W. 2003. Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10: 80 - 100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 23
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Graham, J. W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60: 549 - 576.
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 24
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham, J. W., Olchowski, A. E. and Gilreath, T. D. 2007. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8: 206 - 213.
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 25
    • 0003245614 scopus 로고    scopus 로고
    • On the performance of multiple imputation for multivariate data with small sample size
    • In: Hoyle R., editors Thousand Oaks, CA, Thousand Oaks, CA,: Sage
    • Graham, J. W. and Schafer, J. L. 1999. " On the performance of multiple imputation for multivariate data with small sample size. ". In Statistical strategies for small sample research, Edited by: Hoyle, R. 1 - 29. Thousand Oaks, CA: Sage.
    • (1999) Statistical strategies for small sample research , pp. 1-29
    • Graham, J.W.1    Schafer, J.L.2
  • 28
    • 3042811867 scopus 로고    scopus 로고
    • Confidence limits for the indirect effect: Distribution of the product and resampling methods
    • MacKinnon, D. P., Lockwood, C. M. and Williams, J. 2004. Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39: 99 - 128.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 99-128
    • MacKinnon, D.P.1    Lockwood, C.M.2    Williams, J.3
  • 30
    • 79952582418 scopus 로고    scopus 로고
    • Growth modeling with non-ignorable dropout: Alternative analyses of the STAR*D antidepressant trial
    • Muthén, B., Asparouhov, T., Hunter, A. and Leuchter, A. 2011. Growth modeling with non-ignorable dropout: Alternative analyses of the STAR*D antidepressant trial. Psychological Methods, 16: 17 - 33.
    • (2011) Psychological Methods , vol.16 , pp. 17-33
    • Muthén, B.1    Asparouhov, T.2    Hunter, A.3    Leuchter, A.4
  • 32
    • 0345040656 scopus 로고    scopus 로고
    • How to use a Monte Carlo study to decide on sample size and determine power
    • Muthén, L. K. and Muthén, B. O. 2002. How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9: 599 - 620.
    • (2002) Structural Equation Modeling , vol.9 , pp. 599-620
    • Muthén, L.K.1    Muthén, B.O.2
  • 33
    • 84862335646 scopus 로고    scopus 로고
    • Advantages of Monte Carlo confidence intervals for indirect effects
    • Preacher, K. J. and Selig, J. P. 2012. Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6: 77 - 98.
    • (2012) Communication Methods and Measures , vol.6 , pp. 77-98
    • Preacher, K.J.1    Selig, J.P.2
  • 36
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. and Graham, J. 2002. Missing data: Our view of the state of the art. Psychological Methods, 7: 147 - 177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.1    Graham, J.2
  • 37
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, J. and Olsen, M. 1998. Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33: 545 - 571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.1    Olsen, M.2
  • 38
    • 84875514169 scopus 로고    scopus 로고
    • Mediation in experimental and nonexperimental studies: New procedures and recommendations
    • Shrout, P. E. and Bolger, N. 2002. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7: 422 - 445.
    • (2002) Psychological Methods , vol.7 , pp. 422-445
    • Shrout, P.E.1    Bolger, N.2
  • 39
    • 0002037905 scopus 로고
    • Asymptotic intervals for indirect effects in structural equations models
    • In: Leinhart S., editors San Francisco, CA, San Francisco, CA,: Jossey-Bass
    • Sobel, M. E. 1982. " Asymptotic intervals for indirect effects in structural equations models. ". In Sociological methodology 1982, Edited by: Leinhart, S. 290 - 312. San Francisco, CA: Jossey-Bass.
    • (1982) Sociological methodology 1982 , pp. 290-312
    • Sobel, M.E.1
  • 40
    • 85081800285 scopus 로고    scopus 로고
    • Refining multivariate normal imputations to accommodate non-normal data
    • American Statistics Association, Toronto, Retrieved from
    • Song, J. and Belin, T. R. Refining multivariate normal imputations to accommodate non-normal data. Proceedings of the Survey Research Methods Section, American Statistics Association. Toronto, Canada. Retrieved from http://www.amstat.org/sections/srms/proceedings/y2004/files/Jsm2004-000905.pdf
    • Proceedings of the Survey Research Methods Section
    • Song, J.1    Belin, T.R.2
  • 42
    • 79959843155 scopus 로고    scopus 로고
    • From EM to data augmentation: The emergence of MCMC Bayesian computation in the 1980s
    • Tanner, M. A. and Wong, W. H. 2010. From EM to data augmentation: The emergence of MCMC Bayesian computation in the 1980s. Statistical Science, 25: 506 - 516.
    • (2010) Statistical Science , vol.25 , pp. 506-516
    • Tanner, M.A.1    Wong, W.H.2
  • 43
    • 0842272144 scopus 로고
    • Simulating multivariate nonnormal distributions
    • Vale, C. D. and Maurelli, V. A. 1983.) Simulating multivariate nonnormal distributions. Psychometrika, 48: 465 - 471.
    • (1983) Psychometrika , vol.48 , pp. 465-471
    • Vale, C.D.1    Maurelli, V.A.2
  • 44
    • 84875526144 scopus 로고    scopus 로고
    • Should a normal imputation model be modified to impute skewed variables?
    • von Hippel, P. T. 2013. Should a normal imputation model be modified to impute skewed variables?. Sociological Methods and Research, 42: 105 - 138.
    • (2013) Sociological Methods and Research , vol.42 , pp. 105-138
    • von Hippel, P.T.1
  • 46
    • 0002367816 scopus 로고
    • Structural equations with nonnormal variables: Problems and remedies
    • In: Hoyle R. H., editors Newbury Park, CA, Newbury Park, CA,: Sage
    • West, S. G., Finch, J. F. and Curran, P. J. 1995. " Structural equations with nonnormal variables: Problems and remedies. ". In Structural equation modeling: Issues and applications, Edited by: Hoyle, R. H. 56 - 75. Newbury Park, CA: Sage.
    • (1995) Structural equation modeling: Issues and applications , pp. 56-75
    • West, S.G.1    Finch, J.F.2    Curran, P.J.3
  • 47
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White, I. R., Royston, P. and Wood, A. M. 2011. Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30: 377 - 399.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 48
    • 84868121050 scopus 로고    scopus 로고
    • ML versus MI for missing data with violation of distribution conditions
    • Yuan, K. H., Yang-Wallentin, F. and Bentler, P. M. 2012. ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41: 598 - 629.
    • (2012) Sociological Methods & Research , vol.41 , pp. 598-629
    • Yuan, K.H.1    Yang-Wallentin, F.2    Bentler, P.M.3
  • 49
    • 72449124266 scopus 로고    scopus 로고
    • Bayesian mediation analysis
    • Yuan, Y. and MacKinnon, D. P. 2009. Bayesian mediation analysis. Psychological Methods, 14 (4): 301 - 322.
    • (2009) Psychological Methods , vol.14 , Issue.4 , pp. 301-322
    • Yuan, Y.1    MacKinnon, D.P.2
  • 50
    • 84872342551 scopus 로고    scopus 로고
    • Methods for mediation analysis with missing data
    • Zhang, Z. Y. and Wang, L. J. 2013. Methods for mediation analysis with missing data. Psychometrika, 78: 154 - 184.
    • (2013) Psychometrika , vol.78 , pp. 154-184
    • Zhang, Z.Y.1    Wang, L.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.