메뉴 건너뛰기




Volumn 21, Issue 10, 2013, Pages 516-521

Postreplication targeting of transformants by bacterial immune systems?

Author keywords

Bacterial immune systems; CRISPR; Natural transformation; Recombination; Restriction modification

Indexed keywords

BACTERIAL DNA; COMPLEMENTARY DNA; DOUBLE STRANDED DNA; SINGLE STRANDED DNA; SPACER DNA;

EID: 84884989352     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2013.08.002     Document Type: Review
Times cited : (15)

References (37)
  • 1
    • 22544464152 scopus 로고    scopus 로고
    • The biology of restriction and anti-restriction
    • Tock M.R., Dryden D.T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 2005, 8:466-472.
    • (2005) Curr. Opin. Microbiol. , vol.8 , pp. 466-472
    • Tock, M.R.1    Dryden, D.T.2
  • 2
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 3
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
    • Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322:1843-1845.
    • (2008) Science , vol.322 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 4
    • 79956157571 scopus 로고    scopus 로고
    • Evolution and classification of the CRISPR-Cas systems
    • Makarova K.S., et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9:467-477.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 467-477
    • Makarova, K.S.1
  • 5
    • 34250662138 scopus 로고    scopus 로고
    • The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats
    • Grissa I., et al. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007, 8:172.
    • (2007) BMC Bioinformatics , vol.8 , pp. 172
    • Grissa, I.1
  • 6
    • 77249170201 scopus 로고    scopus 로고
    • CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
    • Marraffini L.A., Sontheimer E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 2010, 11:181-190.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 181-190
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 7
    • 34248400310 scopus 로고    scopus 로고
    • A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
    • Haft D.H., et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005, 1:e60.
    • (2005) PLoS Comput. Biol. , vol.1
    • Haft, D.H.1
  • 8
    • 84870718176 scopus 로고    scopus 로고
    • Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information
    • Fineran P.C., Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012, 434:202-209.
    • (2012) Virology , vol.434 , pp. 202-209
    • Fineran, P.C.1    Charpentier, E.2
  • 9
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica F.J., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009, 155:733-740.
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.1
  • 10
    • 77956498326 scopus 로고    scopus 로고
    • Sequence- and structure-specific RNA processing by a CRISPR endonuclease
    • Haurwitz R.E., et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010, 329:1355-1358.
    • (2010) Science , vol.329 , pp. 1355-1358
    • Haurwitz, R.E.1
  • 11
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • Brouns S.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321:960-964.
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.1
  • 12
    • 58049191229 scopus 로고    scopus 로고
    • Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
    • Carte J., et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 2008, 22:3489-3496.
    • (2008) Genes Dev. , vol.22 , pp. 3489-3496
    • Carte, J.1
  • 13
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 14
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468:67-71.
    • (2010) Nature , vol.468 , pp. 67-71
    • Garneau, J.E.1
  • 15
    • 84861996069 scopus 로고    scopus 로고
    • CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
    • Westra E.R., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 2012, 46:595-605.
    • (2012) Mol. Cell , vol.46 , pp. 595-605
    • Westra, E.R.1
  • 16
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 17
    • 79251544864 scopus 로고    scopus 로고
    • Rapid pneumococcal evolution in response to clinical interventions
    • Croucher N.J., et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011, 331:430-434.
    • (2011) Science , vol.331 , pp. 430-434
    • Croucher, N.J.1
  • 18
    • 36849090593 scopus 로고    scopus 로고
    • Natural genetic transformation: prevalence, mechanisms and function
    • Johnsborg O., et al. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 2007, 158:767-778.
    • (2007) Res. Microbiol. , vol.158 , pp. 767-778
    • Johnsborg, O.1
  • 19
    • 64349108725 scopus 로고    scopus 로고
    • The genetic transformation machinery: composition, localization and mechanism
    • Claverys J.P., et al. The genetic transformation machinery: composition, localization and mechanism. FEMS Microbiol. Rev. 2009, 33:643-656.
    • (2009) FEMS Microbiol. Rev. , vol.33 , pp. 643-656
    • Claverys, J.P.1
  • 20
    • 33745920513 scopus 로고    scopus 로고
    • Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae
    • Prudhomme M., et al. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 2006, 313:89-92.
    • (2006) Science , vol.313 , pp. 89-92
    • Prudhomme, M.1
  • 21
    • 79951660517 scopus 로고    scopus 로고
    • Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila
    • Charpentier X., et al. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J. Bacteriol. 2011, 193:1114-1121.
    • (2011) J. Bacteriol. , vol.193 , pp. 1114-1121
    • Charpentier, X.1
  • 22
    • 0035883519 scopus 로고    scopus 로고
    • Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution
    • Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 2001, 29:3742-3756.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 3742-3756
    • Kobayashi, I.1
  • 23
    • 0024341226 scopus 로고
    • DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function
    • Cerritelli S., et al. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function. Proc. Natl. Acad. Sci. U.S.A. 1989, 86:9223-9227.
    • (1989) Proc. Natl. Acad. Sci. U.S.A. , vol.86 , pp. 9223-9227
    • Cerritelli, S.1
  • 24
    • 0038414524 scopus 로고    scopus 로고
    • DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300
    • Berndt C., et al. DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology 2003, 149:895-901.
    • (2003) Microbiology , vol.149 , pp. 895-901
    • Berndt, C.1
  • 25
    • 78651062080 scopus 로고    scopus 로고
    • Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination
    • Humbert O., et al. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Mol. Microbiol. 2011, 79:387-401.
    • (2011) Mol. Microbiol. , vol.79 , pp. 387-401
    • Humbert, O.1
  • 26
    • 84863610046 scopus 로고    scopus 로고
    • Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis
    • Ambur O.H., et al. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis. PLoS ONE 2012, 7:e39742.
    • (2012) PLoS ONE , vol.7
    • Ambur, O.H.1
  • 27
    • 84874765546 scopus 로고    scopus 로고
    • Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation
    • Johnston C., et al. Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation. PLoS Pathog. 2013, 9:e1003178.
    • (2013) PLoS Pathog. , vol.9
    • Johnston, C.1
  • 28
    • 84865144676 scopus 로고    scopus 로고
    • CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
    • Bikard D., et al. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 2012, 12:177-186.
    • (2012) Cell Host Microbe , vol.12 , pp. 177-186
    • Bikard, D.1
  • 29
    • 84878193178 scopus 로고    scopus 로고
    • Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
    • Zhang Y., et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 2013, 50:488-503.
    • (2013) Mol. Cell , vol.50 , pp. 488-503
    • Zhang, Y.1
  • 30
    • 0142125292 scopus 로고    scopus 로고
    • Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming single strands
    • Bergé M., et al. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming single strands. Mol. Microbiol. 2003, 50:527-536.
    • (2003) Mol. Microbiol. , vol.50 , pp. 527-536
    • Bergé, M.1
  • 31
    • 34447325120 scopus 로고    scopus 로고
    • A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA
    • Mortier-Barrière I., et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 2007, 130:824-836.
    • (2007) Cell , vol.130 , pp. 824-836
    • Mortier-Barrière, I.1
  • 32
    • 79959818880 scopus 로고    scopus 로고
    • Role of the single-stranded DNA binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity
    • Attaiech L., et al. Role of the single-stranded DNA binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity. PLoS Genet. 2011, 7:e1002156.
    • (2011) PLoS Genet. , vol.7
    • Attaiech, L.1
  • 33
    • 80053261257 scopus 로고    scopus 로고
    • Recombination and DNA repair in Helicobacter pylori
    • Dorer M.S., et al. Recombination and DNA repair in Helicobacter pylori. Annu. Rev. Microbiol. 2011, 65:329-348.
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 329-348
    • Dorer, M.S.1
  • 34
    • 84876106424 scopus 로고    scopus 로고
    • Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria
    • Seitz P., Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 2012, 37:336-363.
    • (2012) FEMS Microbiol. Rev. , vol.37 , pp. 336-363
    • Seitz, P.1    Blokesch, M.2
  • 35
    • 0016745114 scopus 로고
    • A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA
    • Lacks S., Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. J. Biol. Chem. 1975, 250:4060-4066.
    • (1975) J. Biol. Chem. , vol.250 , pp. 4060-4066
    • Lacks, S.1    Greenberg, B.2
  • 36
    • 0034054227 scopus 로고    scopus 로고
    • Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system
    • Lacks S.A., et al. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol. Microbiol. 2000, 35:1089-1098.
    • (2000) Mol. Microbiol. , vol.35 , pp. 1089-1098
    • Lacks, S.A.1
  • 37
    • 84886750859 scopus 로고    scopus 로고
    • The DpnI/DpnII pneumococcal system, defence against foreign attach without compromising genetic exchange
    • Johnston C., et al. The DpnI/DpnII pneumococcal system, defence against foreign attach without compromising genetic exchange. Mobile Genet. Elements 2013, 3:e25582.
    • (2013) Mobile Genet. Elements , vol.3
    • Johnston, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.