메뉴 건너뛰기




Volumn 80, Issue 1, 2014, Pages 101-117

A feature construction approach for genetic iterative rule learning algorithm

Author keywords

Classification; Feature construction; Genetic fuzzy systems; Iterative learning approach

Indexed keywords

CLASSIFICATION (OF INFORMATION); ECONOMIC AND SOCIAL EFFECTS; FUZZY INFERENCE; FUZZY RULES; ITERATIVE METHODS; LEARNING SYSTEMS; NEONATAL MONITORING;

EID: 84884980599     PISSN: 00220000     EISSN: 10902724     Source Type: Journal    
DOI: 10.1016/j.jcss.2013.03.011     Document Type: Conference Paper
Times cited : (9)

References (31)
  • 1
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with fuzzy logic controller
    • E.H. Mamdani, and S. Assilian An experiment in linguistic synthesis with fuzzy logic controller Int. J. Man-Mach. Stud. 1 1975 1 13
    • (1975) Int. J. Man-Mach. Stud. , vol.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 2
    • 9244258580 scopus 로고    scopus 로고
    • Extracting fuzzy if-then rules by using the information matrix technique
    • C. Huang, and C. Moraga Extracting fuzzy if-then rules by using the information matrix technique J. Comput. System Sci. 70 1 2005 26 52
    • (2005) J. Comput. System Sci. , vol.70 , Issue.1 , pp. 26-52
    • Huang, C.1    Moraga, C.2
  • 6
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • M.G. Smith, and L. Bull Genetic programming with a genetic algorithm for feature construction and selection Genet. Program. Evol. Mach. 6 3 2005 265 281
    • (2005) Genet. Program. Evol. Mach. , vol.6 , Issue.3 , pp. 265-281
    • Smith, M.G.1    Bull, L.2
  • 7
    • 56749132927 scopus 로고    scopus 로고
    • Iterative feature construction for improving inductive learning algorithms
    • S. Piramuthu, and R.T. Sikora Iterative feature construction for improving inductive learning algorithms Expert Syst. Appl. 36 2 2009 3401 3406
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3401-3406
    • Piramuthu, S.1    Sikora, R.T.2
  • 8
    • 84859431026 scopus 로고    scopus 로고
    • Two-stage phone duration modeling with feature construction and feature vector extension for the needs of speech synthesis
    • A. Lazaridis, T. Ganchev, I. Mporas, E. Dermatas, and N. Fakotakis Two-stage phone duration modeling with feature construction and feature vector extension for the needs of speech synthesis Comput. Speech Lang. 26 4 2012 274 292
    • (2012) Comput. Speech Lang. , vol.26 , Issue.4 , pp. 274-292
    • Lazaridis, A.1    Ganchev, T.2    Mporas, I.3    Dermatas, E.4    Fakotakis, N.5
  • 9
    • 84855873704 scopus 로고    scopus 로고
    • Strengthening learning algorithms by feature discovery
    • O. Dor, and Y. Reich Strengthening learning algorithms by feature discovery Inform. Sci. 189 2012 176 190
    • (2012) Inform. Sci. , vol.189 , pp. 176-190
    • Dor, O.1    Reich, Y.2
  • 10
    • 77952759391 scopus 로고    scopus 로고
    • Improving the genetic algorithm of SLAVE
    • A. González, and R. Pérez Improving the genetic algorithm of SLAVE Mathware Soft Comput. 16 2009 59 70
    • (2009) Mathware Soft Comput. , vol.16 , pp. 59-70
    • González, A.1    Pérez, R.2
  • 11
    • 0003104485 scopus 로고    scopus 로고
    • A learning system of fuzzy control rules
    • F. Herrera, J.L. Verdegay, Physica-Verlag Wurzburg
    • A. González, and R. Pérez A learning system of fuzzy control rules F. Herrera, J.L. Verdegay, Genetic Algorithms and Soft Computing 1996 Physica-Verlag Wurzburg 202 225
    • (1996) Genetic Algorithms and Soft Computing , pp. 202-225
    • González, A.1    Pérez, R.2
  • 12
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • A. González, and R. Pérez SLAVE: a genetic learning system based on an iterative approach IEEE Trans. Fuzzy Syst. 7 2 1999 176 191
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.2 , pp. 176-191
    • González, A.1    Pérez, R.2
  • 14
    • 80053080472 scopus 로고    scopus 로고
    • A two-step approach of feature construction for a genetic learning algorithm
    • D. García, A. González, R. Pérez, A two-step approach of feature construction for a genetic learning algorithm, in: Proc. 2011 IEEE International Conference on Fuzzy Systems, 2011, pp. 1255-1262.
    • (2011) Proc. 2011 IEEE International Conference on Fuzzy Systems , pp. 1255-1262
    • García, D.1
  • 16
    • 78549257114 scopus 로고    scopus 로고
    • A genetic learning of fuzzy relational rules
    • WCCI art. no. 5584718
    • Y. Caises, E. Leyva, A. González, R. Pérez, A genetic learning of fuzzy relational rules, in: 2010 IEEE World Congress on Computational Intelligence, WCCI 2010, art. no. 5584718.
    • (2010) 2010 IEEE World Congress on Computational Intelligence
    • Caises, Y.1
  • 17
    • 0032069167 scopus 로고    scopus 로고
    • Completeness and consistency conditions for learning fuzzy rules
    • A. González, and R. Pérez Completeness and consistency conditions for learning fuzzy rules Fuzzy Sets and Systems 96 1998 37 51
    • (1998) Fuzzy Sets and Systems , vol.96 , pp. 37-51
    • González, A.1    Pérez, R.2
  • 20
    • 0004522529 scopus 로고    scopus 로고
    • On uncertainty measures used for decision tree induction
    • L. Wehenkel, On uncertainty measures used for decision tree induction, in: Proc. of IPMU'96, 1996, pp. 413-418.
    • Proc. of IPMU'96 , vol.1996 , pp. 413-418
    • Wehenkel, L.1
  • 21
    • 0029293380 scopus 로고
    • A learning methodology in uncertain and imprecise environments
    • A. González A learning methodology in uncertain and imprecise environments Int. J. Intell. Syst. 19 1995 357 371
    • (1995) Int. J. Intell. Syst. , vol.19 , pp. 357-371
    • González, A.1
  • 22
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science Irvine, CA available at
    • A. Asuncion, and D.J. Newman UCI Machine Learning Repository 2007 University of California, School of Information and Computer Science Irvine, CA available at: http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 23
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
    • L. Castillo, A. González, and R. Pérez Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm Fuzzy Sets and Systems 120 3 2001 309 321
    • (2001) Fuzzy Sets and Systems , vol.120 , Issue.3 , pp. 309-321
    • Castillo, L.1    González, A.2    Pérez, R.3
  • 24
    • 84949196940 scopus 로고    scopus 로고
    • XCS and gale: "a comparative study of two learning classifier"
    • P. Lanzi, W. Stolzman, S. Wilson, Lecture Notes in Comput. Sci. Springer Heidelberg
    • E. Bernardó-Mansilla, X. Llorá, and J. Garrel XCS and gale: "A comparative study of two learning classifier" P. Lanzi, W. Stolzman, S. Wilson, Advances in Learning Classifier Systems Lecture Notes in Comput. Sci. vol. 2321 2002 Springer Heidelberg 115 132
    • (2002) Advances in Learning Classifier Systems , vol.2321 , pp. 115-132
    • Bernardó-Mansilla, E.1    Llorá, X.2    Garrel, J.3
  • 25
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • A. González, and R. Pérez SLAVE: a genetic learning system based on an iterative approach IEEE Trans. Fuzzy Syst. 7 2 1999 176 191
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.2 , pp. 176-191
    • González, A.1    Pérez, R.2
  • 26
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • O. Dunn Multiple comparisons among means J. Am. Stat. Assoc. 1961
    • (1961) J. Am. Stat. Assoc.
    • Dunn, O.1
  • 27
    • 55549103698 scopus 로고    scopus 로고
    • KEEL: A software tool to assess evolutionary algorithms to data mining problems
    • J. Alcalá KEEL: A software tool to assess evolutionary algorithms to data mining problems Soft Comput. 13 3 2009 307 318
    • (2009) Soft Comput. , vol.13 , Issue.3 , pp. 307-318
    • Alcalá, J.1
  • 28
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • H. Ishibuchi Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems IEEE Trans. Syst. Man Cybern., Part B, Cybern. 29 5 1999 601 618
    • (1999) IEEE Trans. Syst. Man Cybern., Part B, Cybern. , vol.29 , Issue.5 , pp. 601-618
    • Ishibuchi, H.1
  • 29
    • 0035426475 scopus 로고    scopus 로고
    • Combining GP operators with SA search to evolve fuzzy rule based classifiers
    • L. Sánchez, and I. Couso Combining GP operators with SA search to evolve fuzzy rule based classifiers Inform. Sci. 136 1-4 2001 175 192
    • (2001) Inform. Sci. , vol.136 , Issue.14 , pp. 175-192
    • Sánchez, L.1    Couso, I.2
  • 30
    • 33646036159 scopus 로고    scopus 로고
    • Induction of descriptive fuzzy classifiers with the Logitboost algorithm
    • J. Otero, and L. Sánchez Induction of descriptive fuzzy classifiers with the Logitboost algorithm Soft Comput. 10 9 2006 825 835
    • (2006) Soft Comput. , vol.10 , Issue.9 , pp. 825-835
    • Otero, J.1    Sánchez, L.2
  • 31
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Mach. Learn. 29 1997 103 137
    • (1997) Mach. Learn. , vol.29 , pp. 103-137
    • Domingos, P.1    Pazzani, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.