메뉴 건너뛰기




Volumn 36, Issue 10, 2013, Pages 1058-1069

A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter

Author keywords

[No Author keywords available]

Indexed keywords

ANGIOSPERM; NICHE; POPULATION DISTRIBUTION; SAMPLING; SOFTWARE;

EID: 84884702154     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.1600-0587.2013.07872.x     Document Type: Article
Times cited : (2604)

References (64)
  • 1
    • 84867412542 scopus 로고    scopus 로고
    • Comparative interpretation of count, presence-absence and point methods for species distribution models
    • Aarts G. et al. 2012. Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods Ecol. Evol. 3: 177-187.
    • (2012) Methods Ecol. Evol. , vol.3 , pp. 177-187
    • Aarts, G.1
  • 2
    • 84864054002 scopus 로고    scopus 로고
    • Harnessing the world's biodiversity data: promise and peril in ecological niche modeling of species distributions
    • Anderson R. P. 2012. Harnessing the world's biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann. N. Y. Acad. Sci. 1260: 66-80.
    • (2012) Ann. N. Y. Acad. Sci. , vol.1260 , pp. 66-80
    • Anderson, R.P.1
  • 3
    • 77954786550 scopus 로고    scopus 로고
    • The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela
    • Anderson R. and Raza A. 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37: 1378-1393.
    • (2010) J. Biogeogr. , vol.37 , pp. 1378-1393
    • Anderson, R.1    Raza, A.2
  • 4
    • 79959735518 scopus 로고    scopus 로고
    • Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with MaxEnt
    • Anderson R. P. and Gonzalez I. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with MaxEnt. Ecol. Model. 222: 2796-2811.
    • (2011) Ecol. Model. , vol.222 , pp. 2796-2811
    • Anderson, R.P.1    Gonzalez, I.2
  • 5
    • 84864255928 scopus 로고    scopus 로고
    • Uses and misuses of bioclimatic envelope modelling
    • in press
    • Araujo M. and Peterson A. 2012. Uses and misuses of bioclimatic envelope modelling. Ecology in press.
    • (2012) Ecology
    • Araujo, M.1    Peterson, A.2
  • 6
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157: 101-118.
    • (2002) Ecol. Model. , vol.157 , pp. 101-118
    • Austin, M.1
  • 7
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Model. 200: 1-19.
    • (2007) Ecol. Model. , vol.200 , pp. 1-19
    • Austin, M.1
  • 8
    • 73949151923 scopus 로고    scopus 로고
    • An evaluation of three statistical methods used to model resource selection
    • Baasch D. et al. 2010. An evaluation of three statistical methods used to model resource selection. Ecol. Model. 221: 565-574.
    • (2010) Ecol. Model. , vol.221 , pp. 565-574
    • Baasch, D.1
  • 9
    • 79955088867 scopus 로고    scopus 로고
    • The crucial role of the accessible area in ecological niche modeling and species distribution modeling
    • Barve N. et al. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222: 1810-1819.
    • (2011) Ecol. Model. , vol.222 , pp. 1810-1819
    • Barve, N.1
  • 11
    • 80053401740 scopus 로고    scopus 로고
    • Point pattern modelling for degraded presence-only data over large regions
    • Chakraborty A. et al. 2011. Point pattern modelling for degraded presence-only data over large regions. J. R. Stat. Soc. C 60: 757-776.
    • (2011) J. R. Stat. Soc. C , vol.60 , pp. 757-776
    • Chakraborty, A.1
  • 13
    • 84858760490 scopus 로고    scopus 로고
    • Generative and discriminative learning with unknown labeling bias
    • Dudik M. and Phillips S. 2009. Generative and discriminative learning with unknown labeling bias. Adv. Neural Inform. Process. Syst. 21: 1-8.
    • (2009) Adv. Neural Inform. Process. Syst. , vol.21 , pp. 1-8
    • Dudik, M.1    Phillips, S.2
  • 14
    • 9444278508 scopus 로고    scopus 로고
    • Performance guarantees for regularized maximum entropy density estimation
    • Dudik M. et al. 2004. Performance guarantees for regularized maximum entropy density estimation. Learn. Theory Proc. 3120: 472-486.
    • (2004) Learn. Theory Proc. , vol.3120 , pp. 472-486
    • Dudik, M.1
  • 15
    • 84864038934 scopus 로고    scopus 로고
    • Correcting sample selection bias in maximum entropy density estimation
    • Dudik M. et al. 2005. Correcting sample selection bias in maximum entropy density estimation. Adv. Neural Inform. Process. Syst. 17: 1-8.
    • (2005) Adv. Neural Inform. Process. Syst. , vol.17 , pp. 1-8
    • Dudik, M.1
  • 16
    • 78650029343 scopus 로고    scopus 로고
    • The art of modelling range-shifting species
    • Elith J. et al. 2010. The art of modelling range-shifting species. Methods Ecol. Evol. 1: 330-342.
    • (2010) Methods Ecol. Evol. , vol.1 , pp. 330-342
    • Elith, J.1
  • 17
    • 78649991963 scopus 로고    scopus 로고
    • A statistical explanation of MaxEnt for ecologists
    • Elith J. et al. 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17: 43-57.
    • (2011) Divers. Distrib. , vol.17 , pp. 43-57
    • Elith, J.1
  • 18
    • 84884702847 scopus 로고    scopus 로고
    • Finite-sample equivalence of several statistical models for presence-only data
    • Fithian W. and Hastie T. 2012. Finite-sample equivalence of several statistical models for presence-only data. - .
    • (2012)
    • Fithian, W.1    Hastie, T.2
  • 19
    • 70749114963 scopus 로고    scopus 로고
    • Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods
    • Giovanelli J. G. R. et al. 2010. Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecol. Model. 221: 215-224.
    • (2010) Ecol. Model. , vol.221 , pp. 215-224
    • Giovanelli, J.G.R.1
  • 21
    • 4344601500 scopus 로고    scopus 로고
    • New developments in museum-based informatics and applications in biodiversity analysis
    • Graham C. et al. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19: 497-503.
    • (2004) Trends Ecol. Evol. , vol.19 , pp. 497-503
    • Graham, C.1
  • 23
    • 77952526154 scopus 로고    scopus 로고
    • Maximum entropy, logistic regression, and species abundance
    • He F. 2010. Maximum entropy, logistic regression, and species abundance. Oikos 119: 578-582.
    • (2010) Oikos , vol.119 , pp. 578-582
    • He, F.1
  • 24
    • 33750352002 scopus 로고    scopus 로고
    • The effect of sample size and species characteristics on performance of different species distribution modeling methods
    • Hernandez P. A. et al. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.
    • (2006) Ecography , vol.29 , pp. 773-785
    • Hernandez, P.A.1
  • 25
    • 84860258937 scopus 로고    scopus 로고
    • Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model
    • Hijmans R. J. 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93: 679-688.
    • (2012) Ecology , vol.93 , pp. 679-688
    • Hijmans, R.J.1
  • 26
    • 29544443445 scopus 로고    scopus 로고
    • Very high resolution interpolated climate surfaces for global land areas
    • Hijmans R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.
    • (2005) Int. J. Climatol. , vol.25 , pp. 1965-1978
    • Hijmans, R.J.1
  • 28
    • 33646272322 scopus 로고    scopus 로고
    • Resource selection functions based on use-availability data: theoretical motivation and evaluation methods
    • Johnson C. J. et al. 2006. Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. J. Wildl. Manage. 70: 347-357.
    • (2006) J. Wildl. Manage. , vol.70 , pp. 347-357
    • Johnson, C.J.1
  • 29
    • 12144266865 scopus 로고    scopus 로고
    • Use and interpretation of logistic regression in habitat-selection studies
    • Keating K. and Cherry S. 2004. Use and interpretation of logistic regression in habitat-selection studies. J. Wildl. Manage. 68: 774-789.
    • (2004) J. Wildl. Manage. , vol.68 , pp. 774-789
    • Keating, K.1    Cherry, S.2
  • 30
    • 77957064121 scopus 로고    scopus 로고
    • Predicting species distributions from checklist data using site-occupancy models
    • Kery M. et al. 2010. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 37: 1851-1862.
    • (2010) J. Biogeogr. , vol.37 , pp. 1851-1862
    • Kery, M.1
  • 31
    • 33645097847 scopus 로고    scopus 로고
    • Building statistical models to analyze species distributions
    • Latimer A. et al. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33-50.
    • (2006) Ecol. Appl. , vol.16 , pp. 33-50
    • Latimer, A.1
  • 32
    • 33845691798 scopus 로고    scopus 로고
    • Weighted distributions and estimation of resource selection probability functions
    • Lele S. R. and Keim J. L. 2006. Weighted distributions and estimation of resource selection probability functions. Ecology 87: 3021-3028.
    • (2006) Ecology , vol.87 , pp. 3021-3028
    • Lele, S.R.1    Keim, J.L.2
  • 33
    • 27644529788 scopus 로고    scopus 로고
    • Evolution of diversity: the Cape flora
    • Linder H. 2005. Evolution of diversity: the Cape flora. Trends Plant Sci. 10: 536-541.
    • (2005) Trends Plant Sci. , vol.10 , pp. 536-541
    • Linder, H.1
  • 34
    • 20444488428 scopus 로고    scopus 로고
    • Selecting thresholds of occurrence in the prediction of species distributions
    • Liu C. et al. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393.
    • (2005) Ecography , vol.28 , pp. 385-393
    • Liu, C.1
  • 35
    • 79953286484 scopus 로고    scopus 로고
    • Measuring and comparing the accuracy of species distribution models with presence-absence data
    • Liu C. et al. 2010. Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34: 232-243.
    • (2010) Ecography , vol.34 , pp. 232-243
    • Liu, C.1
  • 36
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the per formance of predictive distribution models
    • Lobo J. et al. 2008. AUC: a misleading measure of the per formance of predictive distribution models. Global Ecol. Biogeogr. 17: 145-151.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 145-151
    • Lobo, J.1
  • 38
    • 77955139714 scopus 로고    scopus 로고
    • Testing the accuracy of species distribution models using species records from a new field survey
    • Newbold T. et al. 2010. Testing the accuracy of species distribution models using species records from a new field survey. Oikos 119: 1326-1334.
    • (2010) Oikos , vol.119 , pp. 1326-1334
    • Newbold, T.1
  • 40
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation
    • Phillips S. and Dudik M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31: 161.
    • (2008) Ecography , vol.31 , pp. 161
    • Phillips, S.1    Dudik, M.2
  • 41
    • 77955452660 scopus 로고    scopus 로고
    • POC plots: calibrating species distribution models with presence-only data
    • Phillips S. and Elith J. 2010. POC plots: calibrating species distribution models with presence-only data. Ecology 91: 2476-2484.
    • (2010) Ecology , vol.91 , pp. 2476-2484
    • Phillips, S.1    Elith, J.2
  • 42
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips S. et al. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231-259.
    • (2006) Ecol. Model. , vol.190 , pp. 231-259
    • Phillips, S.1
  • 43
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
    • Phillips S. et al. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19: 181-197.
    • (2009) Ecol. Appl. , vol.19 , pp. 181-197
    • Phillips, S.1
  • 44
    • 0034973664 scopus 로고    scopus 로고
    • Evaluation of museum collection data for use in biodiversity assessment
    • Ponder W. et al. 2001. Evaluation of museum collection data for use in biodiversity assessment. Conserv. Biol. 15: 648-657.
    • (2001) Conserv. Biol. , vol.15 , pp. 648-657
    • Ponder, W.1
  • 45
    • 63849304974 scopus 로고    scopus 로고
    • Botanical richness and endemicity patterns of Borneo derived from species distribution models
    • Raes N. et al. 2009. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32: 180-192.
    • (2009) Ecography , vol.32 , pp. 180-192
    • Raes, N.1
  • 47
    • 84884702765 scopus 로고    scopus 로고
    • The Protea Atlas Project technical report
    • Rebelo T. 2002. The Protea Atlas Project technical report. - .
    • (2002)
    • Rebelo, T.1
  • 48
    • 0242573339 scopus 로고    scopus 로고
    • Geographical sampling bias and its implications for conservation priorities in Africa
    • Reddy S. and Dávalos L. 2003. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30: 1719-1727.
    • (2003) J. Biogeogr. , vol.30 , pp. 1719-1727
    • Reddy, S.1    Dávalos, L.2
  • 49
    • 84884699969 scopus 로고    scopus 로고
    • Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
    • in press
    • Renner I. W. and Warton D. I. 2012. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics in press.
    • (2012) Biometrics
    • Renner, I.W.1    Warton, D.I.2
  • 50
    • 84863982602 scopus 로고    scopus 로고
    • Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions
    • in press
    • Royle J. A. et al. 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol. Evol. in press.
    • (2012) Methods Ecol. Evol.
    • Royle, J.A.1
  • 51
    • 58149260203 scopus 로고    scopus 로고
    • Taxonomist survey biases and the unveiling of biodiversity patterns
    • Sastre P. and Lobo J. M. 2009. Taxonomist survey biases and the unveiling of biodiversity patterns. Biol. Conserv. 142: 462-467.
    • (2009) Biol. Conserv. , vol.142 , pp. 462-467
    • Sastre, P.1    Lobo, J.M.2
  • 52
    • 0003904656 scopus 로고    scopus 로고
    • South African atlas of agrohyrdology and climatology
    • Water Research Commission, Pretoria, South Africa
    • Schulze R. 1997. South African atlas of agrohyrdology and climatology. Tech. Rep., Report TT82/96, Water Research Commission, Pretoria, South Africa
    • (1997) Tech. Rep., Report TT82/96
    • Schulze, R.1
  • 53
    • 84884702477 scopus 로고    scopus 로고
    • Accounting for sampling bias can dramatically improve the predictive accuracy of presence-only species distribution models
    • in press
    • Syfert M. et al. 2013. Accounting for sampling bias can dramatically improve the predictive accuracy of presence-only species distribution models. PloS One in press.
    • (2013) PloS One
    • Syfert, M.1
  • 54
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58: 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 55
    • 58849160847 scopus 로고    scopus 로고
    • Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know?
    • VanDerWal J. et al. 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Model. 220: 589-594.
    • (2009) Ecol. Model. , vol.220 , pp. 589-594
    • VanDerWal, J.1
  • 56
    • 66949112586 scopus 로고    scopus 로고
    • Presence-only data and the EM algorithm
    • Ward G. et al. 2009. Presence-only data and the EM algorithm. Biometrics 65: 554-563.
    • (2009) Biometrics , vol.65 , pp. 554-563
    • Ward, G.1
  • 57
    • 79955545366 scopus 로고    scopus 로고
    • Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria
    • Warren D. and Seifert S. 2011. Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21: 335-342.
    • (2011) Ecol. Appl. , vol.21 , pp. 335-342
    • Warren, D.1    Seifert, S.2
  • 58
    • 77955243011 scopus 로고    scopus 로고
    • ENMTools: a toolbox for comparative studies of environmental niche models
    • Warren D. et al. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607-611.
    • (2010) Ecography , vol.33 , pp. 607-611
    • Warren, D.1
  • 59
    • 79952680020 scopus 로고    scopus 로고
    • Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology
    • Warton D. I. and Shepherd L. C. 2010. Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology. Ann. Appl. Stat. 4: 1383-1402.
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 1383-1402
    • Warton, D.I.1    Shepherd, L.C.2
  • 60
    • 79961136764 scopus 로고    scopus 로고
    • Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models
    • Webber B. L. et al. 2011. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers. Distrib. 17: 978-1000.
    • (2011) Divers. Distrib. , vol.17 , pp. 978-1000
    • Webber, B.L.1
  • 61
    • 84867394789 scopus 로고    scopus 로고
    • Assessing transferability of ecological models: an underappreciated aspect of statistical validation
    • in press
    • Wenger S. J. and Olden J. D. 2012. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol. Evol. in press.
    • (2012) Methods Ecol. Evol.
    • Wenger, S.J.1    Olden, J.D.2
  • 62
    • 65649090595 scopus 로고    scopus 로고
    • Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data
    • Wisz M. S. and Guisan A. 2009. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol. 9: 8.
    • (2009) BMC Ecol. , vol.9 , pp. 8
    • Wisz, M.S.1    Guisan, A.2
  • 63
    • 84884700406 scopus 로고    scopus 로고
    • Presence-only modelling using MAXENT: when can we trust the inferences?
    • in press
    • Yackulic C. B. et al. 2012. Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol. Evol. in press.
    • (2012) Methods Ecol. Evol.
    • Yackulic, C.B.1
  • 64
    • 74549172109 scopus 로고    scopus 로고
    • Assessing the impacts of climate change and land transformation on Banksiain the South West Australian Floristic Region
    • Yates C. J. et al. 2010. Assessing the impacts of climate change and land transformation on Banksiain the South West Australian Floristic Region. Divers. Distrib. 16: 187-201.
    • (2010) Divers. Distrib. , vol.16 , pp. 187-201
    • Yates, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.