메뉴 건너뛰기




Volumn 17, Issue 5, 2013, Pages 851-885

Evaluation of Gaussian approximations for data assimilation in reservoir models

Author keywords

Data assimilation; Inverse modelling; Reservoir characterization; Uncertainty quantification

Indexed keywords

BAYESIAN ANALYSIS; DATA ASSIMILATION; GAUSSIAN METHOD; HYDROCARBON RESERVOIR; INVERSE ANALYSIS; KALMAN FILTER; MARKOV CHAIN; MAXIMUM LIKELIHOOD ANALYSIS; MONTE CARLO ANALYSIS; NUMERICAL MODEL; RESERVOIR CHARACTERIZATION; UNCERTAINTY ANALYSIS;

EID: 84884593750     PISSN: 14200597     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10596-013-9359-x     Document Type: Article
Times cited : (81)

References (36)
  • 1
    • 70350168210 scopus 로고    scopus 로고
    • The ensemble Kalman filter in reservoir engineering-a review
    • Aanonsen, S. I., Naevdal, G., Oliver, D. S., Reynolds, A. C., Valles, B.: The ensemble Kalman filter in reservoir engineering-a review. SPE J. 14(3), 393-412 (2009).
    • (2009) SPE J. , vol.14 , Issue.3 , pp. 393-412
    • Aanonsen, S.I.1    Naevdal, G.2    Oliver, D.S.3    Reynolds, A.C.4    Valles, B.5
  • 2
    • 84890007901 scopus 로고    scopus 로고
    • An introduction to the numerics of flow in porous media using Matlab
    • G. Hasle, K.-A. Lie, and E. Quak (Eds.), Berlin: Springer
    • Aarnes, J. E., Gimse, T., Lie, K.-A.: An introduction to the numerics of flow in porous media using Matlab. In: Hasle, G., Lie, K.-A., Quak, E. (eds.) Geometric Modelling, Numerical Simulation, and Optimization, pp. 265-306. Springer, Berlin (2007).
    • (2007) Geometric Modelling, Numerical Simulation, and Optimization , pp. 265-306
    • Aarnes, J.E.1    Gimse, T.2    Lie, K.-A.3
  • 4
    • 0035708348 scopus 로고    scopus 로고
    • Quantifying uncertainty in production forecasts: another look at the PUNQ-S3 problem
    • Barker, J. W., Cuypers, M., Holden, L.: Quantifying uncertainty in production forecasts: another look at the PUNQ-S3 problem. SPE J. 6, 433-441 (2001).
    • (2001) SPE J. , vol.6 , pp. 433-441
    • Barker, J.W.1    Cuypers, M.2    Holden, L.3
  • 5
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks, S. P., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434-455 (1998).
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 6
    • 77952887324 scopus 로고    scopus 로고
    • Cross-covariances and localization for EnKF in multiphase flow data assimilation
    • doi:10.1007/s10596-009-9174-6
    • Chen, Y., Oliver, D.: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci. 14, 579-601 (2010). doi: 10. 1007/s10596-009-9174-6.
    • (2010) Comput. Geosci. , vol.14 , pp. 579-601
    • Chen, Y.1    Oliver, D.2
  • 7
    • 84855648156 scopus 로고    scopus 로고
    • Ensemble randomized maximum likelihood method as an iterative ensemble smoother
    • Chen, Y., Oliver, D. S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44, 1-26 (2012).
    • (2012) Math. Geosci. , vol.44 , pp. 1-26
    • Chen, Y.1    Oliver, D.S.2
  • 9
    • 84876567668 scopus 로고    scopus 로고
    • MCMC methods for functions: modifying old algorithms to make them faster
    • in press). arXiv: 1202. 0709
    • Cotter, S. L., Roberts, G. O., Stuart, A. M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. To Appear. Stat. Sci. (2013, in press). arXiv: 1202. 0709.
    • (2013) To Appear. Stat. Sci.
    • Cotter, S.L.1    Roberts, G.O.2    Stuart, A.M.3    White, D.4
  • 12
    • 79952449299 scopus 로고    scopus 로고
    • Multimodal ensemble Kalman filtering using Gaussian mixture models
    • Dovera, L., Della Rossa, E.: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci. 15, 307-323 (2011).
    • (2011) Comput. Geosci. , vol.15 , pp. 307-323
    • Dovera, L.1    della Rossa, E.2
  • 13
    • 72149127123 scopus 로고    scopus 로고
    • Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques
    • W11414
    • Efendiev, Y., Datta-Gupta, A., Ma, X., Mallic, B.: Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques. Water Resour. Res. 45(W11414), 11 (2009).
    • (2009) Water Resour. Res. , vol.45 , pp. 11
    • Efendiev, Y.1    Datta-Gupta, A.2    Ma, X.3    Mallic, B.4
  • 15
    • 79952438014 scopus 로고    scopus 로고
    • Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications
    • doi:10.1007/s10596-010-9198-y
    • Emerick, A., Reynolds, A.: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci. 15, 251-269 (2011). doi: 10. 1007/s10596-010-9198-y.
    • (2011) Comput. Geosci. , vol.15 , pp. 251-269
    • Emerick, A.1    Reynolds, A.2
  • 16
    • 84862981753 scopus 로고    scopus 로고
    • Combining the ensemble Kalman filter with Markov chain Monte Carlo for improved history matching and uncertainty characterization
    • Emerick, A., Reynolds, A.: Combining the ensemble Kalman filter with Markov chain Monte Carlo for improved history matching and uncertainty characterization. SPE J. 17(2), 418-440 (2012).
    • (2012) SPE J. , vol.17 , Issue.2 , pp. 418-440
    • Emerick, A.1    Reynolds, A.2
  • 17
    • 84874950917 scopus 로고    scopus 로고
    • Investigation of the sampling performance of ensemble-based methods with a simple reservoir model
    • Emerick, A. A., Reynolds, A. C.: Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325-350 (2013).
    • (2013) Comput. Geosci. , vol.17 , Issue.2 , pp. 325-350
    • Emerick, A.A.1    Reynolds, A.C.2
  • 18
    • 33846191948 scopus 로고    scopus 로고
    • Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF
    • Gao, G., Zafari, M., Reynolds, A.: Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. SPE J. 11, 506-515 (2006).
    • (2006) SPE J. , vol.11 , pp. 506-515
    • Gao, G.1    Zafari, M.2    Reynolds, A.3
  • 19
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari, G., Cohn, S. E.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125(554), 723-757 (1999).
    • (1999) Q. J. R. Meteorol. Soc. , vol.125 , Issue.554 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 21
    • 84871031867 scopus 로고    scopus 로고
    • Evaluating data assimilation algorithms
    • Law, K. J. H., Stuart, A. M.: Evaluating data assimilation algorithms. Mon. Weather Rev. 140, 3757-3782 (2012).
    • (2012) Mon. Weather Rev. , vol.140 , pp. 3757-3782
    • Law, K.J.H.1    Stuart, A.M.2
  • 23
    • 0037774717 scopus 로고    scopus 로고
    • Evaluation of Monte Carlo methods for assessing uncertainty
    • Liu, N., Oliver, D. S.: Evaluation of Monte Carlo methods for assessing uncertainty. SPE J. 8, 188-195 (2003).
    • (2003) SPE J. , vol.8 , pp. 188-195
    • Liu, N.1    Oliver, D.S.2
  • 24
    • 84876589692 scopus 로고    scopus 로고
    • Ensemble Kalman methods for inverse problems
    • Iglesias, K., Law, M., Stuart, A. M.: Ensemble Kalman methods for inverse problems. Inverse Problems 29, 045001 (2013). arXiv: 1202. 0709.
    • (2013) Inverse Problems , vol.29 , pp. 045001
    • Iglesias, K.1    Law, M.2    Stuart, A.M.3
  • 25
    • 42549157976 scopus 로고    scopus 로고
    • An efficient two-stage sampling method for uncertainty quantification in history matching geological models
    • Ma, X., Al-Harbi, A., Datta-Gupta, A., Efendiev, Y.: An efficient two-stage sampling method for uncertainty quantification in history matching geological models. SPE J. 13(1), 7787 (2008).
    • (2008) SPE J. , vol.13 , Issue.1 , pp. 7787
    • Ma, X.1    Al-Harbi, A.2    Datta-Gupta, A.3    Efendiev, Y.4
  • 27
    • 78650755472 scopus 로고    scopus 로고
    • Recent progress on reservoir history matching: a review
    • doi:10.1007/s10596-010-9194-2
    • Oliver, D., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 185-221 (2011). doi: 10. 1007/s10596-010-9194-2.
    • (2011) Comput. Geosci. , vol.15 , pp. 185-221
    • Oliver, D.1    Chen, Y.2
  • 28
    • 0030757228 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for conditioning a permeability field to pressure data
    • Oliver, D. S., Cunha, L. B., Reynolds, A. C.: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Math. Geol. 29, 61-91 (1997).
    • (1997) Math. Geol. , vol.29 , pp. 61-91
    • Oliver, D.S.1    Cunha, L.B.2    Reynolds, A.C.3
  • 29
    • 0002650114 scopus 로고    scopus 로고
    • Finite element and finite difference methods for continuous flows in porous media
    • In: Ewing, R. E. (ed.), SIAM, Philadelphia
    • Russell, T. F., Wheeler, M. F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R. E. (ed.) Mathematics of Reservoir Simulation. SIAM, Philadelphia.
    • Mathematics of Reservoir Simulation
    • Russell, T.F.1    Wheeler, M.F.2
  • 30
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the form of the ensemble transformation in the ensemble square root filters
    • Sakov, P., Oke, P. R.: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev. 136, 1042-1053 (2008).
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 31
    • 79952447568 scopus 로고    scopus 로고
    • Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    • Stordal, A. S., Karlsen, H. A., Nvdal, G., Skaug, H. J., Valls, B.: Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput. Geosci. 15, 293-305 (2011).
    • (2011) Comput. Geosci. , vol.15 , pp. 293-305
    • Stordal, A.S.1    Karlsen, H.A.2    Nvdal, G.3    Skaug, H.J.4    Valls, B.5
  • 32
    • 84857919122 scopus 로고    scopus 로고
    • Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    • Stordal, A. S., Valestrand, R., Karlsen, H. A., Nvdal, G., Skaug, H. J.: Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models. Comput. Geosci. 16, 467-482 (2012).
    • (2012) Comput. Geosci. , vol.16 , pp. 467-482
    • Stordal, A.S.1    Valestrand, R.2    Karlsen, H.A.3    Nvdal, G.4    Skaug, H.J.5
  • 33
    • 77951793592 scopus 로고    scopus 로고
    • Inverse problems: a Bayesian perspective
    • Stuart, A. M.: Inverse problems: a Bayesian perspective. In Acta Numerica. 19 (2010).
    • (2010) In Acta Numerica , vol.19
    • Stuart, A.M.1
  • 34
    • 78650689877 scopus 로고    scopus 로고
    • Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF
    • doi:10.1007/s10596-010-9200-8
    • Tavakoli, R., Reynolds, A.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF. Comput. Geosci. 15, 99-116 (2011). doi: 10. 1007/s10596-010-9200-8.
    • (2011) Comput. Geosci. , vol.15 , pp. 99-116
    • Tavakoli, R.1    Reynolds, A.2
  • 35
    • 79952982326 scopus 로고    scopus 로고
    • Quantifying Monte Carlo uncertainty in the ensemble Kalman filter
    • Naevdal, G., Skaug, H. J., Thulin, K., Aanonsen, S. I.: Quantifying Monte Carlo uncertainty in the ensemble Kalman filter. SPE J. 16(1), 172-182 (2011).
    • (2011) SPE J. , vol.16 , Issue.1 , pp. 172-182
    • Naevdal, G.1    Skaug, H.J.2    Thulin, K.3    Aanonsen, S.I.4
  • 36
    • 77954855387 scopus 로고    scopus 로고
    • Estimation of depths of fluid contacts by history matching using iterative ensemble-Kalman smoothers
    • Li, G., Wang, Y., Reynolds, A. C.: Estimation of depths of fluid contacts by history matching using iterative ensemble-Kalman smoothers. SPE J. 15(2), 509-525 (2010).
    • (2010) SPE J. , vol.15 , Issue.2 , pp. 509-525
    • Li, G.1    Wang, Y.2    Reynolds, A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.