메뉴 건너뛰기




Volumn 140, Issue 11, 2012, Pages 3757-3782

Evaluating Data Assimilation Algorithms

Author keywords

Bayesian methods; Data assimilation; Filtering techniques; Optimization; Probability forecasts models distribution; Variational analysis

Indexed keywords

BAYESIAN METHODS; DATA ASSIMILATION; FILTERING TECHNIQUE; PROBABILITY FORECASTS; VARIATIONAL ANALYSIS;

EID: 84871031867     PISSN: 00270644     EISSN: 15200493     Source Type: Journal    
DOI: 10.1175/MWR-D-11-00257.1     Document Type: Article
Times cited : (122)

References (68)
  • 1
    • 0030438938 scopus 로고    scopus 로고
    • A method for producing and evaluating probabilistic forecasts fromensemblemodel integrations
    • Anderson, J., 1996: A method for producing and evaluating probabilistic forecasts fromensemblemodel integrations. J. Climate, 9, 1518-1530.
    • (1996) J. Climate , vol.9 , pp. 1518-1530
    • Anderson, J.1
  • 2
    • 34248655432 scopus 로고    scopus 로고
    • Sampling the posterior: An approach to non-Gaussian data assimilation
    • Apte, A., M. Hairer, A. Stuart, and J. Voss, 2007: Sampling the posterior: An approach to non-Gaussian data assimilation. Physica D, 230, 50-64.
    • (2007) Physica D , vol.230 , pp. 50-64
    • Apte, A.1    Hairer, M.2    Stuart, A.3    Voss, J.4
  • 3
    • 40749141129 scopus 로고    scopus 로고
    • Data assimilation: Mathematical and statistical perspectives
    • Apte, A., C. Jones, A. Stuart, and J. Voss, 2008a: Data assimilation: Mathematical and statistical perspectives. Int. J. Numer. Methods Fluids, 56, 1033-1046.
    • (2008) Int. J. Numer. Methods Fluids , vol.56 , pp. 1033-1046
    • Apte, A.1    Jones, C.2    Stuart, A.3    Voss, J.4
  • 4
    • 39049138716 scopus 로고    scopus 로고
    • A Bayesian approach to Lagrangian data assimilation
    • Apte, A., C. Jones, A. Stuart, 2008b: A Bayesian approach to Lagrangian data assimilation. Tellus, 60, 336-347.
    • (2008) Tellus , vol.60 , pp. 336-347
    • Apte, A.1    Jones, C.2    Stuart, A.3
  • 5
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam, M., S. Maskell, N. Gordon, and T. Clapp, 2002: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50, 174-188.
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 174-188
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 7
    • 79954472184 scopus 로고    scopus 로고
    • Fundamentals of Stochastic Filtering
    • Bain, A., and D. Crişan, 2008: Fundamentals of Stochastic Filtering. Springer Verlag, 390 pp.
    • (2008) Springer Verlag , pp. 390
    • Bain, A.1    Crişan, D.2
  • 8
    • 11144274676 scopus 로고
    • Computational issues in parameter estimation and feedback control problems for partial differential equation systems
    • Banks, H., 1992: Computational issues in parameter estimation and feedback control problems for partial differential equation systems. Physica D, 60, 226-238.
    • (1992) Physica D , vol.60 , pp. 226-238
    • Banks, H.1
  • 9
    • 0004119220 scopus 로고
    • Estimation Techniques for Distributed Parameter Systems
    • Banks, H., and K. Kunisch, 1989: Estimation Techniques for Distributed Parameter Systems. Birkhauser, 315 pp.
    • (1989) Birkhauser , vol.315
    • Banks, H.1    Kunisch, K.2
  • 10
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • doi:101029/2002JD002900
    • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10. 1029/2002JD002900.
    • (2003) J. Geophys. Res. , vol.108 , pp. 8775
    • Bengtsson, T.1    Snyder, S.2    Nychka, D.3
  • 11
    • 0009924881 scopus 로고    scopus 로고
    • Inverse Modeling of the Ocean and Atmosphere
    • Bennett, A., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.
    • (2002) Cambridge University Press , pp. 234
    • Bennett, A.1
  • 13
    • 77958565141 scopus 로고    scopus 로고
    • On variational data assimilation in continuous time
    • Bröcker, J., 2010: On variational data assimilation in continuous time. Quart. J. Roy. Meteor. Soc., 136, 1906-1919.
    • (2010) Quart. J. Roy. Meteor. Soc. , vol.136 , pp. 1906-1919
    • Bröcker, J.1
  • 14
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks, S., and A. Gelman, 1998: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat., 7, 434-455.
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 434-455
    • Brooks, S.1    Gelman, A.2
  • 15
    • 0003954651 scopus 로고
    • Smoothing for linear and nonlinear dynamic systems
    • U. S. Air Force Tech. Rep. AFB-TDR-63-119, Wright-Patterson Air Force Base, OH, Aeronautical Systems Division
    • Bryson, A., andM. Frazier, 1963: Smoothing for linear and nonlinear dynamic systems. U. S. Air Force Tech. Rep. AFB-TDR-63-119, Wright-Patterson Air Force Base, OH, Aeronautical Systems Division, 353-364.
    • (1963) , pp. 353-364
    • Bryson, A.1    Frazier, M.2
  • 16
    • 46449116212 scopus 로고    scopus 로고
    • Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system
    • doi:101063/1. 2909862
    • Carrassi, A., M. Ghil, A. Trevisan, and F. Uboldi, 2008: Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system. Chaos, 18, 023112, doi:10. 1063/1. 2909862.
    • (2008) Chaos , vol.18 , pp. 023112
    • Carrassi, A.1    Ghil, M.2    Trevisan, A.3    Uboldi, F.4
  • 17
    • 6344233084 scopus 로고    scopus 로고
    • Dimensional reduction for a Bayesian filter
    • Chorin, A., and P. Krause, 2004: Dimensional reduction for a Bayesian filter. Proc. Natl. Acad. Sci. USA, 101, 15 013-15 017.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101
    • Chorin, A.1    Krause, P.2
  • 19
    • 70450202962 scopus 로고    scopus 로고
    • Bayesian inverse problems for functions and applications to fluid mechanics
    • doi:101088/0266-5611/25/ 11/115008
    • Cotter, S., M. Dashti, J. Robinson, and A. Stuart, 2009: Bayesian inverse problems for functions and applications to fluid mechanics. Inverse Probl., 25, 115008, doi:10. 1088/0266-5611/25/ 11/115008.
    • (2009) Inverse Probl. , vol.25 , pp. 115008
    • Cotter, S.1    Dashti, M.2    Robinson, J.3    Stuart, A.4
  • 20
    • 84855975089 scopus 로고    scopus 로고
    • Variational data assimilation using targetted random walks
    • Cotter, S., M. Dashti, and A. Stuart, 2011: Variational data assimilation using targetted random walks. Int. J. Numer. Methods Fluids, 68, 403-421.
    • (2011) Int. J. Numer. Methods Fluids , vol.68 , pp. 403-421
    • Cotter, S.1    Dashti, M.2    Stuart, A.3
  • 21
    • 0023123538 scopus 로고
    • Variational assimilation of meteorological observations with the adjoint vorticity equation
    • Courtier, P., and O. Talagrand, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Quart. J. Roy. Meteor. Soc., 113, 1329-1347.
    • (1987) II: Numerical results. Quart. J. Roy. Meteor. Soc. , vol.113 , pp. 1329-1347
    • Courtier, P.1    Talagrand, O.2
  • 22
    • 33746101155 scopus 로고
    • n the estimation of state variables and parameters for noisy dynamic systems
    • Cox, H., 1964:On the estimation of state variables and parameters for noisy dynamic systems. IEEE Trans. Autom. Control, 9, 5-12.
    • (1964) IEEE Trans. Autom. Control , vol.9 , pp. 5-12
    • Cox, H.1
  • 23
    • 0036501083 scopus 로고    scopus 로고
    • Exponential time differencing for stiff systems
    • Cox, S., and P. Matthews, 2002: Exponential time differencing for stiff systems. J. Comput. Phys., 176, 430-455.
    • (2002) J. Comput. Phys. , vol.176 , pp. 430-455
    • Cox, S.1    Matthews, P.2
  • 25
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. OceanDyn., 53, 343-367.
    • (2003) OceanDyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 26
    • 84895347518 scopus 로고    scopus 로고
    • Data Assimilation: The Ensemble Kalman Filter
    • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Springer Verlag, 307 pp.
    • (2009) Springer Verlag , pp. 307
    • Evensen, G.1
  • 27
    • 0002162819 scopus 로고
    • Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble Kalman filter with a quasigeostrophic model
    • Evensen, G., and Coauthors, 1994: Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev., 124, 85-96.
    • (1994) Mon. Wea. Rev. , vol.124 , pp. 85-96
    • Evensen, G.1
  • 28
    • 33846861503 scopus 로고    scopus 로고
    • On the equivalence between Kalman smoothing and weak-constraint fourdimensional variational data assimilation
    • Fisher, M., M. Leutbecher, and G. Kelly, 2005: On the equivalence between Kalman smoothing and weak-constraint fourdimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3235-3246.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131 , pp. 3235-3246
    • Fisher, M.1    Leutbecher, M.2    Kelly, G.3
  • 29
    • 0033913199 scopus 로고    scopus 로고
    • A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles
    • Hamill, T., C. Snyder, and R. Morss, 2000: A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev., 128, 1835-1851.
    • (2000) Mon. Wea. Rev. , vol.128 , pp. 1835-1851
    • Hamill, T.1    Snyder, C.2    Morss, R.3
  • 30
    • 44949245827 scopus 로고    scopus 로고
    • Filtering nonlinear dynamical systems with linear stochastic models
    • doi:101088/0951-7715/21/6/008
    • Harlim, J., and A. Majda, 2008: Filtering nonlinear dynamical systems with linear stochastic models. Nonlinearity, 21, 1281, doi:10. 1088/0951-7715/21/6/008.
    • (2008) Nonlinearity , vol.21 , pp. 1281
    • Harlim, J.1    Majda, A.2
  • 31
    • 84885756063 scopus 로고
    • Forecasting, Structural Time Series Models, and the Kalman Filter
    • Harvey, A., 1991: Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge University Press, 554 pp.
    • (1991) Cambridge University Press , pp. 554
    • Harvey, A.1
  • 35
    • 0001332237 scopus 로고
    • Stochastic Processes and Filtering Theory
    • Jazwinski, A, 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.
    • (1970) Academic Press , vol.376
    • Jazwinski, A.1
  • 36
    • 84860523889 scopus 로고    scopus 로고
    • Statistical and Computational Inverse Problems
    • Kaipio, J, and E. Somersalo, 2005: Statistical and Computational Inverse Problems. Springer, 339 pp.
    • (2005) Springer , vol.339
    • Kaipio, J.1    Somersalo, E.2
  • 37
    • 85024429815 scopus 로고
    • new approach to linear filtering and prediction problems
    • Kalman, R, 1960:Anew approach to linear filtering and prediction problems. J. Basic Eng., 82, 35-45.
    • (1960) J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.1
  • 38
    • 0008510807 scopus 로고    scopus 로고
    • Atmospheric Modeling, Data Assimilation, and Predictability
    • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.
    • (2003) Cambridge University Press , vol.341
    • Kalnay, E.1
  • 40
    • 0037255418 scopus 로고    scopus 로고
    • A comparison of two methods for developing the linearization of a shallow-water model
    • Lawless, A., N. Nichols, and S. Ballard, 2003: A comparison of two methods for developing the linearization of a shallow-water model. Quart. J. Roy. Meteor. Soc., 129, 1237-1254.
    • (2003) Quart. J. Roy. Meteor. Soc. , vol.129 , pp. 1237-1254
    • Lawless, A.1    Nichols, N.2    Ballard, S.3
  • 41
    • 77955540665 scopus 로고    scopus 로고
    • Comparison of ensemble Kalman filters under non-Gaussianity
    • Lei, J., P. Bickel, and C. Snyder, 2010: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. Wea. Rev., 138, 1293-1306.
    • (2010) Mon. Wea. Rev. , vol.138 , pp. 1293-1306
    • Lei, J.1    Bickel, P.2    Snyder, C.3
  • 43
    • 0037774717 scopus 로고    scopus 로고
    • Evaluation of Monte Carlo methods for assessing uncertainty
    • Liu, N., and D. S. Oliver, 2003: Evaluation of Monte Carlo methods for assessing uncertainty. SPE J., 8, 188-195.
    • (2003) SPE J. , vol.8 , pp. 188-195
    • Liu, N.1    Oliver, D.S.2
  • 44
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc, A., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177-1194.
    • (1986) Quart. J. Roy. Meteor. Soc. , vol.112 , pp. 1177-1194
    • Lorenc, A.1
  • 45
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E., 1963: Deterministic nonperiodic flow. J. Atmos Sci., 20, 130-141.
    • (1963) J. Atmos Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 46
    • 0001846226 scopus 로고    scopus 로고
    • Predictability: A problem partly solved
    • Reading, United Kingdom, ECMWF
    • Lorenz, E., 1996: Predictability: A problem partly solved. Proc. Seminar on Predictability, Reading, United Kingdom, ECMWF, 1-18.
    • (1996) Proc. Seminar on Predictability , pp. 1-18
    • Lorenz, E.1
  • 47
    • 77953299631 scopus 로고    scopus 로고
    • Mathematical strategies for filtering turbulent dynamical systems
    • Majda, A., J. Harlim, and B. Gershgorin, 2010: Mathematical strategies for filtering turbulent dynamical systems. Dyn. Syst., 27, 441-486.
    • (2010) Dyn. Syst. , vol.27 , pp. 441-486
    • Majda, A.1    Harlim, J.2    Gershgorin, B.3
  • 49
    • 0028554556 scopus 로고
    • Advanced data assimilation in strongly nonlinear dynamical systems
    • Miller, R., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037-1056.
    • (1994) J. Atmos. Sci. , vol.51 , pp. 1037-1056
    • Miller, R.1    Ghil, M.2    Gauthiez, F.3
  • 51
    • 0031862088 scopus 로고    scopus 로고
    • Singular vectors, metrics, and adaptive observations
    • Palmer, T, R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633-653.
    • (1998) J. Atmos. Sci. , vol.55 , pp. 633-653
    • Palmer, T.1    Gelaro, R.2    Barkmeijer, J.3    Buizza, R.4
  • 52
    • 77958592274 scopus 로고    scopus 로고
    • State and parameter estimation using Monte Carlo evaluation of path integrals
    • Quinn, J., and H. Abarbanel, 2010: State and parameter estimation using Monte Carlo evaluation of path integrals. Quart. J. Roy. Meteor. Soc., 136, 1855-1867.
    • (2010) Quart. J. Roy. Meteor. Soc. , vol.136 , pp. 1855-1867
    • Quinn, J.1    Abarbanel, H.2
  • 53
    • 1842504751 scopus 로고    scopus 로고
    • Iterative Methods for Sparse Linear Systems
    • Saad, Y., 1996: Iterative Methods for Sparse Linear Systems. 1st ed. PWS Publishing, 447 pp.
    • (1996) 1st ed. PWS Publishing , pp. 447
    • Saad, Y.1
  • 54
    • 64149083162 scopus 로고    scopus 로고
    • Obstacles to high-dimensional particle filtering
    • Snyder, T, T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 4629-4640.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 4629-4640
    • Snyder, T.1    Bengtsson, T.2    Bickel, B.3    Anderson, J.4
  • 55
    • 77951793592 scopus 로고    scopus 로고
    • Inverse problems: A Bayesian perspective
    • Stuart, A., 2010: Inverse problems: A Bayesian perspective. Acta Numer., 19, 451-559.
    • (2010) Acta Numer. , vol.19 , pp. 451-559
    • Stuart, A.1
  • 56
    • 0023128058 scopus 로고
    • Variational assimilation of meteorological observations with the adjoint vorticity equation
    • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311-1328.
    • (1987) I: Theory. Quart. J. Roy. Meteor. Soc. , vol.113 , pp. 1311-1328
    • Talagrand, O.1    Courtier, P.2
  • 57
    • 84866489204 scopus 로고    scopus 로고
    • Inverse Problem Theory and Methods for Model Parameter Estimation
    • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial Mathematics, 342 pp.
    • (2005) Society for Industrial Mathematics , vol.342
    • Tarantola, A.1
  • 58
    • 79953038067 scopus 로고    scopus 로고
    • Navier-Stokes Equations: Theory and Numerical Analysis
    • Temam, R., 2001: Navier-Stokes Equations: Theory and Numerical Analysis. American Mathematical Society, 408 pp.
    • (2001) American Mathematical Society , pp. 408
    • Temam, R.1
  • 60
    • 0000593274 scopus 로고    scopus 로고
    • Ensemble forecasting at NCEP and the breeding method
    • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297-3319.
    • (1997) Mon. Wea. Rev. , vol.125 , pp. 3297-3319
    • Toth, Z.1    Kalnay, E.2
  • 62
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • van Leeuwen, P, 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089-4114.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 4089-4114
    • Leeuwen, P.V.1
  • 63
    • 78650057011 scopus 로고    scopus 로고
    • Nonlinear data assimilation in geosciences: An extremely efficient particle filter
    • van Leeuwen, P., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 1991-1999.
    • (2010) Quart. J. Roy. Meteor. Soc. , vol.136 , pp. 1991-1999
    • Leeuwen, P.V.1
  • 64
    • 84871916428 scopus 로고    scopus 로고
    • Computational Methods for Inverse Problems
    • Vogel, C., 2002: Computational Methods for Inverse Problems. Society for Industrial Mathematics, 183 pp.
    • (2002) Society for Industrial Mathematics , vol.183
    • Vogel, C.1
  • 65
    • 0000284694 scopus 로고
    • Analysis of costate discretizations in parameter estimation for linear evolution equations
    • Vogel, C., and J. Wade, 1995: Analysis of costate discretizations in parameter estimation for linear evolution equations. SIAM J. Control Optim., 33, 227-254.
    • (1995) SIAM J. Control Optim. , vol.33 , pp. 227-254
    • Vogel, C.1    Wade, J.2
  • 66
    • 84863173809 scopus 로고    scopus 로고
    • E4DVAR: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model
    • Zhang, M., and F. Zhang, 2012: E4DVAR: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587-600.
    • (2012) Mon. Wea. Rev. , vol.140 , pp. 587-600
    • Zhang, M.1    Zhang, F.2
  • 67
    • 79953213364 scopus 로고    scopus 로고
    • Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003
    • Zhang, M., and F. Zhang, X. Huang, and X. Zhang, 2010: Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev., 139, 566-572.
    • (2010) Mon. Wea. Rev. , vol.139 , pp. 566-572
    • Zhang, M.1    Zhang, F.2    Huang, X.3    Zhang, X.4
  • 68
    • 0000755764 scopus 로고    scopus 로고
    • A general weak constraint applicable to operational 4DVAR data assimilation systems
    • Zupanski, D., 1997: A general weak constraint applicable to operational 4DVAR data assimilation systems. Mon. Wea. Rev., 125, 2274-2292.
    • (1997) Mon. Wea. Rev. , vol.125 , pp. 2274-2292
    • Zupanski, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.