메뉴 건너뛰기




Volumn 5, Issue 8, 2013, Pages

Full "laplacianised" posterior naive Bayesian algorithm

Author keywords

Cheminformatics; Classifications; Laplacian corrected modified Naive Bayes; Naive Bayes

Indexed keywords


EID: 84884387515     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/1758-2946-5-37     Document Type: Article
Times cited : (15)

References (11)
  • 2
    • 4143122120 scopus 로고    scopus 로고
    • Classification of kinase inhibitors using a Bayesian model
    • DOI 10.1021/jm0303195
    • Xia X, Maliski EG, Gallant P, Rogers D: Classification of kinase inhibitors using a Bayesian model. J Med Chem 2004, 47:4463-4470. (Pubitemid 39096834)
    • (2004) Journal of Medicinal Chemistry , vol.47 , Issue.18 , pp. 4463-4470
    • Xia, X.1    Maliski, E.G.2    Gallant, P.3    Rogers, D.4
  • 3
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases
    • DOI 10.1021/ci060003g
    • Nidhi, Glick M, Davies JW, Jenkins JL: Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 2006, 46:1124-1133. (Pubitemid 43999157)
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.3 , pp. 1124-1133
    • Nidhi1    Glick, M.2    Davies, J.W.3    Jenkins, J.L.4
  • 4
    • 58149116805 scopus 로고    scopus 로고
    • Ligand-target prediction using winnow and naive Bayesian algorithms and the implications of overall performance statistics
    • Nigsch F, Bender A, Jenkins JL, Mitchell JBO: Ligand-target prediction using winnow and naive Bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model 2008, 48:2313-2325.
    • (2008) J Chem Inf Model , vol.48 , pp. 2313-2325
    • Nigsch, F.1    Bender, A.2    Jenkins, J.L.3    Mitchell, J.B.O.4
  • 5
    • 26944503021 scopus 로고    scopus 로고
    • Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up
    • DOI 10.1177/1087057105281365
    • Rogers D, Brown RD, Hahn M: Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 2005, 10:682-686. (Pubitemid 41476802)
    • (2005) Journal of Biomolecular Screening , vol.10 , Issue.7 , pp. 682-686
    • Rogers, D.1    Brown, R.D.2    Hahn, M.3
  • 6
    • 84867812799 scopus 로고    scopus 로고
    • Note on naive Bayes based on binary descriptors in Cheminformatics
    • Townsend JA, Glen RC, Mussa HY: Note on naive Bayes based on binary descriptors in Cheminformatics. J Chem Inf Model 2012, 52:2494-2500.
    • (2012) J Chem Inf Model , vol.52 , pp. 2494-2500
    • Townsend, J.A.1    Glen, R.C.2    Mussa, H.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.