-
3
-
-
15044362819
-
GATA6 is essential for embryonic development of the liver but dispensable for early heart formation
-
DOI 10.1128/MCB.25.7.2622-2631.2005
-
Zhao R, Watt AJ, Li J, et al. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 2005;25:2622-31. (Pubitemid 40381626)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.7
, pp. 2622-2631
-
-
Zhao, R.1
Watt, A.J.2
Li, J.3
Luebke-Wheeler, J.4
Morrisey, E.E.5
Duncan, S.A.6
-
4
-
-
43049103483
-
Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice
-
Zhao R, Watt AJ, Battle MA, et al. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol 2008;317:614-19.
-
(2008)
Dev Biol
, vol.317
, pp. 614-619
-
-
Zhao, R.1
Watt, A.J.2
Battle, M.A.3
-
5
-
-
0032533241
-
GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo
-
Morrisey EE, Tang Z, Sigrist K, et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 1998;12:3579-90. (Pubitemid 28553248)
-
(1998)
Genes and Development
, vol.12
, Issue.22
, pp. 3579-3590
-
-
Morrisey, E.E.1
Tang, Z.2
Sigrist, K.3
Lu, M.M.4
Jiang, F.5
Ip, H.S.6
Parmacek, M.S.7
-
6
-
-
33748963738
-
Gata6 is an important regulator of mouse pancreas development
-
DOI 10.1016/j.ydbio.2006.06.046, PII S0012160606009729
-
Decker K, Goldman DC, Grasch CL, et al. Gata6 is an important regulator of mouse pancreas development. Dev Biol 2006;298:415-29. (Pubitemid 44441183)
-
(2006)
Developmental Biology
, vol.298
, Issue.2
, pp. 415-429
-
-
Decker, K.1
Goldman, D.C.2
Grasch, C.L.3
Sussel, L.4
-
7
-
-
5644301019
-
Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas
-
DOI 10.1016/j.mce.2004.06.007, PII S0303720704002369
-
Ketola I, Otonkoski T, Pulkkinen MA, et al. Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol 2004;226:51-7. (Pubitemid 39369823)
-
(2004)
Molecular and Cellular Endocrinology
, vol.226
, Issue.1-2
, pp. 51-57
-
-
Ketola, I.1
Otonkoski, T.2
Pulkkinen, M.-A.3
Niemi, H.4
Palgi, J.5
Jacobsen, C.M.6
Wilson, D.B.7
Heikinheimo, M.8
-
8
-
-
14844312096
-
The zinc finger-containing transcription factor Gata-4 is expressed in the developing endocrine pancreas and activates glucagon gene expression
-
DOI 10.1210/me.2004-0051
-
Ritz-Laser B, Mamin A, Brun T, et al. The zinc finger-containing transcription factor Gata-4 is expressed in the developing endocrine pancreas and activates glucagon gene expression. Mol Endocrinol 2005;19:759-70. (Pubitemid 40349446)
-
(2005)
Molecular Endocrinology
, vol.19
, Issue.3
, pp. 759-770
-
-
Ritz-Laser, B.1
Mamin, A.2
Brun, T.3
Avril, I.4
Schwitzgebel, V.M.5
Philippe, J.6
-
9
-
-
0030589639
-
The human GATA-6 gene: Structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals
-
DOI 10.1006/geno.1996.0630
-
Suzuki E, Evans T, Lowry J, et al. The human GATA-6 gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 1996;38:283-90. (Pubitemid 27030116)
-
(1996)
Genomics
, vol.38
, Issue.3
, pp. 283-290
-
-
Suzuki, E.1
Evans, T.2
Lowry, J.3
Truong, L.4
Bell, D.W.5
Testa, J.R.6
Walsh, K.7
-
10
-
-
84655167736
-
GATA6 haploinsufficiency causes pancreatic agenesis in humans
-
Allen HL, Flanagan SE, Shaw-Smith C, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 2011;44:20-2.
-
(2011)
Nat Genet
, vol.44
, pp. 20-22
-
-
Allen, H.L.1
Flanagan, S.E.2
Shaw-Smith, C.3
-
11
-
-
33745317563
-
Generation of mice harbouring a conditional loss-of-function allele of Gata6
-
Sodhi CP, Li J, Duncan SA. Generation of mice harbouring a conditional loss-of-function allele of Gata6. BMC Dev Biol 2006;6:19.
-
(2006)
BMC Dev Biol
, vol.6
, pp. 19
-
-
Sodhi, C.P.1
Li, J.2
Duncan, S.A.3
-
12
-
-
0036730427
-
The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors
-
DOI 10.1038/ng959
-
Kawaguchi Y, Cooper B, Gannon M, et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002;32:128-34. (Pubitemid 34977207)
-
(2002)
Nature Genetics
, vol.32
, Issue.1
, pp. 128-134
-
-
Kawaguchi, Y.1
Cooper, B.2
Gannon, M.3
Ray, M.4
MacDonald, R.J.5
Wright, C.V.E.6
-
13
-
-
3042856262
-
Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
-
Srinivas S, Watanabe T, Lin CS, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001;1:4.
-
(2001)
BMC Dev Biol
, vol.1
, pp. 4
-
-
Srinivas, S.1
Watanabe, T.2
Lin, C.S.3
-
14
-
-
0026716584
-
Antibodies to the cytoplasmic domain of the MUC1 mucin show conservation throughout mammals
-
Pemberton L, Taylor-Papadimitriou J, Gendler SJ. Antibodies to the cytoplasmic domain of the MUC1 mucin show conservation throughout mammals. Biochem Biophys Res Commun 1992;185:167-75.
-
(1992)
Biochem Biophys Res Commun
, vol.185
, pp. 167-175
-
-
Pemberton, L.1
Taylor-Papadimitriou, J.2
Gendler, S.J.3
-
15
-
-
33645236232
-
PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L
-
Beres TM, Masui T, Swift GH, et al. PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol 2006;26:117-30.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 117-130
-
-
Beres, T.M.1
Masui, T.2
Swift, G.H.3
-
16
-
-
84924133024
-
The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity
-
Pin CL, Rukstalis JM, Johnson C, et al. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 2001;155:519-30. (Pubitemid 34289311)
-
(2001)
Journal of Cell Biology
, vol.155
, Issue.3
, pp. 519-530
-
-
Pin, C.L.1
Michael Rukstalis, J.2
Johnson, C.3
Konieczny, S.F.4
-
17
-
-
59849105832
-
Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice
-
e9
-
Bonal C, Thorel F, Ait-Lounis A, et al. Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009;136:309-19 e9.
-
(2009)
Gastroenterology
, vol.136
, pp. 309-319
-
-
Bonal, C.1
Thorel, F.2
Ait-Lounis, A.3
-
18
-
-
84857055748
-
Pancreatic ductal adenocarcinoma and acinar cells: A matter of differentiation and development?
-
Rooman I, Real FX. Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut 2012;61:449-58.
-
(2012)
Gut
, vol.61
, pp. 449-458
-
-
Rooman, I.1
Real, F.X.2
-
20
-
-
80053582948
-
Extensive pancreas regeneration following acinar-specific disruption of Xbp1 in mice
-
Hess DA, Humphrey SE, Ishibashi J, et al. Extensive pancreas regeneration following acinar-specific disruption of Xbp1 in mice. Gastroenterology 2011;141:1463-72.
-
(2011)
Gastroenterology
, vol.141
, pp. 1463-1472
-
-
Hess, D.A.1
Humphrey, S.E.2
Ishibashi, J.3
-
21
-
-
84860390430
-
LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function
-
Holmstrom SR, Deering T, Swift GH, et al. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes Dev 2011;25:1674-9.
-
(2011)
Genes Dev
, vol.25
, pp. 1674-1679
-
-
Holmstrom, S.R.1
Deering, T.2
Swift, G.H.3
-
22
-
-
84863696751
-
Gene expression dynamics after murine pancreatitis unveils novel roles for Hnf1alpha in acinar cell homeostasis
-
Molero X, Vaquero EC, Flandez M, et al. Gene expression dynamics after murine pancreatitis unveils novel roles for Hnf1alpha in acinar cell homeostasis. Gut 2012;61:1187-96.
-
(2012)
Gut
, vol.61
, pp. 1187-1196
-
-
Molero, X.1
Vaquero, E.C.2
Flandez, M.3
-
23
-
-
24944441782
-
Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates
-
DOI 10.1242/dev.01925
-
Means AL, Meszoely IM, Suzuki K, et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 2005;132:3767-76. (Pubitemid 41301112)
-
(2005)
Development
, vol.132
, Issue.16
, pp. 3767-3776
-
-
Means, A.L.1
Meszoely, I.M.2
Suzuki, K.3
Miyamoto, Y.4
Rustgi, A.K.5
Coffey Jr., R.J.6
Wright, C.V.E.7
Stoffers, D.A.8
Leach, S.D.9
-
24
-
-
27244437951
-
Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells
-
DOI 10.1073/pnas.0507567102
-
Minami K, Okuno M, Miyawaki K, et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005;102:15116-21. (Pubitemid 41513344)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.42
, pp. 15116-15121
-
-
Minami, K.1
Okuno, M.2
Miyawaki, K.3
Okumachi, A.4
Ishizaki, K.5
Oyama, K.6
Kawaguchi, M.7
Ishizuka, N.8
Iwanaga, T.9
Seino, S.10
-
25
-
-
0033672199
-
Molecular basis of transdifferentiation of pancreas to liver
-
Shen CN, Slack JM, Tosh D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2000;2:879-87.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 879-887
-
-
Shen, C.N.1
Slack, J.M.2
Tosh, D.3
-
26
-
-
79954538151
-
P53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells
-
Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 2011;10:1312-21.
-
(2011)
Cell Cycle
, vol.10
, pp. 1312-1321
-
-
Pinho, A.V.1
Rooman, I.2
Real, F.X.3
-
27
-
-
77957786157
-
GATA proteins work together with friend of GATA (FOG) and C-terminal binding protein (CTBP) co-regulators to control adipogenesis
-
Jack BH, Crossley M. GATA proteins work together with friend of GATA (FOG) and C-terminal binding protein (CTBP) co-regulators to control adipogenesis. J Biol Chem 2010;285:32405-14.
-
(2010)
J Biol Chem
, vol.285
, pp. 32405-32414
-
-
Jack, B.H.1
Crossley, M.2
-
28
-
-
0347088945
-
GATA transcription factors and fat cell formation
-
DOI 10.1358/dnp.2003.16.9.829340
-
Tong Q, Tsai J, Hotamisligil GS. GATA transcription factors and fat cell formation. Drug News Perspect 2003;16:585-8. (Pubitemid 38094738)
-
(2003)
Drug News and Perspectives
, vol.16
, Issue.9
, pp. 585-588
-
-
Tong, Q.1
Tsai, J.2
Hotamisligil, G.S.3
-
29
-
-
79951724165
-
Noninvasive quantification of pancreatic fat in healthy male population using chemical shift magnetic resonance imaging: Effect of aging on pancreatic fat content
-
Li J, Xie Y, Yuan F, et al. Noninvasive quantification of pancreatic fat in healthy male population using chemical shift magnetic resonance imaging: effect of aging on pancreatic fat content. Pancreas 2011;40:295-9.
-
(2011)
Pancreas
, vol.40
, pp. 295-299
-
-
Li, J.1
Xie, Y.2
Yuan, F.3
-
30
-
-
80455129106
-
Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity
-
Navina S, Acharya C, De Lany JP, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med 2011;3:107ra110.
-
(2011)
Sci Transl Med
, vol.3
-
-
Navina, S.1
Acharya, C.2
De Lany, J.P.3
-
31
-
-
34547667454
-
Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia
-
DOI 10.2353/ajpath.2007.061176
-
Zhu L, Shi G, Schmidt CM, et al. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am J Pathol 2007;171:263-73. (Pubitemid 47339243)
-
(2007)
American Journal of Pathology
, vol.171
, Issue.1
, pp. 263-273
-
-
Zhu, L.1
Shi, G.2
Schmidt, C.M.3
Hruban, R.H.4
Konieczny, S.F.5
-
32
-
-
33847419143
-
Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice
-
DOI 10.1016/j.ccr.2007.01.012, PII S153561080700027X
-
Guerra C, Schuhmacher AJ, Canamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007;11:291-302. (Pubitemid 46349841)
-
(2007)
Cancer Cell
, vol.11
, Issue.3
, pp. 291-302
-
-
Guerra, C.1
Schuhmacher, A.J.2
Canamero, M.3
Grippo, P.J.4
Verdaguer, L.5
Perez-Gallego, L.6
Dubus, P.7
Sandgren, E.P.8
Barbacid, M.9
-
33
-
-
54349103007
-
Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma
-
Fu B, Luo M, Lakkur S, et al. Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer Biol Ther 2008;7:1593-601.
-
(2008)
Cancer Biol Ther
, vol.7
, pp. 1593-1601
-
-
Fu, B.1
Luo, M.2
Lakkur, S.3
-
34
-
-
44949129758
-
Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer
-
Kwei KA, Bashyam MD, Kao J, et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet 2008;4:e1000081.
-
(2008)
PLoS Genet
, vol.4
-
-
Kwei, K.A.1
Bashyam, M.D.2
Kao, J.3
-
36
-
-
79953756460
-
Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy
-
Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011;17:500-3.
-
(2011)
Nat Med
, vol.17
, pp. 500-503
-
-
Collisson, E.A.1
Sadanandam, A.2
Olson, P.3
-
37
-
-
79960470568
-
GATA6 activates WNT signalling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1
-
Zhong Y, Fu B, Pan F, et al. GATA6 activates WNT signalling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS One 2011;6:e22129.
-
(2011)
PLoS One
, vol.6
-
-
Zhong, Y.1
Fu, B.2
Pan, F.3
|