메뉴 건너뛰기




Volumn , Issue , 2009, Pages 145-152

Learning kernels from indefinite similarities

Author keywords

[No Author keywords available]

Indexed keywords

CONIC PROGRAM; CONVEX OPTIMIZATION PROBLEMS; INDEFINITE KERNEL; KERNEL METHODS; LEARNING KERNELS; OPTIMIZATION PROBLEMS; OVERFITTING; REAL APPLICATIONS; REAL DATA SETS; REPRODUCING KERNEL HILBERT SPACES; SIMILARITY MEASURE;

EID: 71149104463     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (68)

References (25)
  • 1
    • 0348006618 scopus 로고    scopus 로고
    • On implementing a primal-dual interior-point method for conic quadratic optimization
    • Andersen, E. D., Roos, C., & Terlaky, T. (2003). On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Programming, 95, 249-277.
    • (2003) Math. Programming , vol.95 , pp. 249-277
    • Andersen, E.D.1    Roos, C.2    Terlaky, T.3
  • 8
    • 17144429687 scopus 로고    scopus 로고
    • Feature space interpretation of SVMs with indefinite kernels
    • Haasdonk, B. (2005). Feature space interpretation of SVMs with indefinite kernels. IEEE Trans. Pattern Anal. and Mach. Intel, 27, 482-492.
    • (2005) IEEE Trans. Pattern Anal. and Mach. Intel , vol.27 , pp. 482-492
    • Haasdonk, B.1
  • 9
    • 0000379660 scopus 로고
    • Computing a nearest symmetric positive semidefinite matrix
    • Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103-118.
    • (1988) Linear Algebra and its Applications , vol.103 , pp. 103-118
    • Higham, N.J.1
  • 10
    • 33646875697 scopus 로고    scopus 로고
    • Support vector machines for dyadic data
    • Hochreiter, S., & Obermayer, K. (2006). Support vector machines for dyadic data. Neural Computation, 18, 1472-1510.
    • (2006) Neural Computation , vol.18 , pp. 1472-1510
    • Hochreiter, S.1    Obermayer, K.2
  • 14
    • 0742287001 scopus 로고    scopus 로고
    • Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships
    • Liao, L., & Noble, W. S. (2003). Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J. Computational Biology, 10, 857-868.
    • (2003) J. Computational Biology , vol.10 , pp. 857-868
    • Liao, L.1    Noble, W.S.2
  • 15
    • 3843050541 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
    • National Taiwan University
    • Lin, H.-T., & Lin, C.-J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods (Technical Report). National Taiwan University.
    • (2003) Technical Report
    • Lin, H.-T.1    Lin, C.-J.2
  • 16
    • 24644470033 scopus 로고    scopus 로고
    • Framework for kernel regularization with application to protein clustering
    • Lu, F., Keles, S., Wright, S. J., & Wahba, G. (2005). Framework for kernel regularization with application to protein clustering. Proc. Natl. Acad. Sci. USA, 102, 12332-12337.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 12332-12337
    • Lu, F.1    Keles, S.2    Wright, S.J.3    Wahba, G.4
  • 21
    • 84972513554 scopus 로고
    • On general minimax theorems
    • Sion, M. (1958). On general minimax theorems. Pacific J. Math., 8, 171-176.
    • (1958) Pacific J. Math , vol.8 , pp. 171-176
    • Sion, M.1
  • 22
    • 0022909661 scopus 로고
    • Toward memory-based reasoning
    • Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Comm. ACM, 29, 1213-1228.
    • (1986) Comm. ACM , vol.29 , pp. 1213-1228
    • Stanfill, C.1    Waltz, D.2
  • 23
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • Strum, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11, 625-653.
    • (1999) Optimization Methods and Software , vol.11 , pp. 625-653
    • Strum, J.F.1
  • 24
    • 3142743708 scopus 로고    scopus 로고
    • Solving semidefinite-quadratic-linear programs using SDPT3
    • Tütüncü, R. H., Toh, K. C., & Todd, M. J. (2003). Solving semidefinite-quadratic-linear programs using SDPT3. Math. Programming, 95, 189-217.
    • (2003) Math. Programming , vol.95 , pp. 189-217
    • Tütüncü, R.H.1    Toh, K.C.2    Todd, M.J.3
  • 25
    • 33749237249 scopus 로고    scopus 로고
    • An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines
    • University of California, Santa Barbara
    • Wu, G., Chang, E. Y., & Zhang, Z. (2005). An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines (Technical Report). University of California, Santa Barbara.
    • (2005) Technical Report
    • Wu, G.1    Chang, E.Y.2    Zhang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.