메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 1771-1800

Variable selection in high-dimension with random designs and orthogonal matching pursuit

Author keywords

Compressed sensing; Greedy algorithms; High dimensional regression; Lasso

Indexed keywords

COEFFICIENT VECTOR; GREEDY ALGORITHMS; HIGH DIMENSIONS; HIGH-DIMENSIONAL REGRESSIONS; LASSO; ORTHOGONAL MATCHING PURSUIT; SPARSITY CONSTRAINTS; VARIABLE SELECTION;

EID: 84884228973     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (30)
  • 3
    • 84860253232 scopus 로고    scopus 로고
    • Least squares superposition codes of moderate dictionary size, reliable at rates up to channel capacity
    • A. R. Barron and A. Joseph. Least squares superposition codes of moderate dictionary size, reliable at rates up to channel capacity. IEEE Trans. Inform. Theory, 58:2541-2557, 2012.
    • (2012) IEEE Trans. Inform. Theory , vol.58 , pp. 2541-2557
    • Barron, A.R.1    Joseph, A.2
  • 4
    • 50649107089 scopus 로고    scopus 로고
    • Approximation and learning by greedy algorithms
    • A. R. Barron, A. Cohen, W. Dahmen, and R. A. DeVore. Approximation and learning by greedy algorithms. Ann. Statist., 36(1):64-94, 2008.
    • (2008) Ann. Statist. , vol.36 , Issue.1 , pp. 64-94
    • Barron, A.R.1    Cohen, A.2    Dahmen, W.3    De Vore, R.A.4
  • 5
    • 79959566409 scopus 로고    scopus 로고
    • Orthogonal matching pursuit for sparse signal recovery with noise
    • T. T. Cai and L. Wang. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inform. Theory, 57(7):4680-4688, 2011.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , Issue.7 , pp. 4680-4688
    • Cai, T.T.1    Wang, L.2
  • 6
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist., 35(6):2313-2351, 2007.
    • (2007) Ann. Statist. , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 7
    • 69049120308 scopus 로고    scopus 로고
    • Near-ideal model selection by l1 minimization
    • E. J. Candès and Y. Plan. Near-ideal model selection by l1 minimization. Ann. Statist., 37 (5 A):2145-2177, 2009.
    • (2009) Ann. Statist. , vol.37 , Issue.5 A , pp. 2145-2177
    • Candès, E.J.1    Plan, Y.2
  • 8
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory, 51(12):4203-4215, 2005.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 9
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406-5425, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candès, E.J.1    Tao, T.2
  • 10
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306, 2006a.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 11
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of equations, the minimal l1-norm nearsolution approximates the sparsest near-solution
    • D. L. Donoho. For most large underdetermined systems of equations, the minimal l1-norm nearsolution approximates the sparsest near-solution. Communications On Pure And Applied Mathematics, 59(7):907-934, 2006b.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 12
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1):6-18, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 14
    • 84884225696 scopus 로고    scopus 로고
    • Orthogonal matching pursuit: A Brownian motion analysis
    • A. K. Fletcher and S. Rangan. Orthogonal matching pursuit: A Brownian motion analysis. IEEE Trans. Sig. Processing, (99):1-1, 2011.
    • (2011) IEEE Trans. Sig. Processing , Issue.99 , pp. 1-1
    • Fletcher, A.K.1    Rangan, S.2
  • 15
    • 79959571368 scopus 로고    scopus 로고
    • Risk of penalized least squares, greedy selection and l1 penalization for flexible function libraries
    • C. Huang, G. H. L. Cheang, and A. R. Barron. Risk of penalized least squares, greedy selection and l1 penalization for flexible function libraries. Technical Report, 2008.
    • (2008) Technical Report
    • Huang, C.1    Cheang, G.H.L.2    Barron, A.R.3
  • 16
    • 0000796112 scopus 로고
    • A simple lemma for optimization in a Hilbert space, with application to projection pursuit and neural net training
    • L. Jones. A simple lemma for optimization in a Hilbert space, with application to projection pursuit and neural net training. Ann. Statist., 20:608-613, 1992.
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.1
  • 17
    • 0001556720 scopus 로고    scopus 로고
    • Efficient agnostic learning of neural networks with bounded fan-in
    • W. S. Lee, P. L. Bartlett, and R. C. Williamson. Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inform. Theory, 42(6):2118-2132, 1996.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , Issue.6 , pp. 2118-2132
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 18
    • 0027842081 scopus 로고
    • Matching pursuit with time-frequency dictionaries
    • S. Mallat and S. M. Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Processing, 41:3397-3415, 1993.
    • (1993) IEEE Trans. Signal Processing , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, S.M.Z.2
  • 19
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Buhlmann. High-dimensional graphs and variable selection with the lasso. Ann. Statist., 34(3):1436-1462, 2006.
    • (2006) Ann. Statist. , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 20
  • 21
    • 0009400517 scopus 로고
    • Condition numbers of random matrices
    • S. J. Szarek. Condition numbers of random matrices. Journal of Complexity, 7(2):131-149, 1991.
    • (1991) Journal of Complexity , vol.7 , Issue.2 , pp. 131-149
    • Szarek, S.J.1
  • 23
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231-2242, 2004.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 24
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory, 52(3):1030-1051, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 25
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655-4666, 2007.
    • (2007) IEEE Trans. Inform. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 26
    • 65749083666 scopus 로고    scopus 로고
    • 1constrained quadratic programming (lasso)
    • 1constrained quadratic programming (lasso). IEEE Trans. Inform. Theory, 55(5):2183-2202, 2009.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 27
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • C. H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist., 36(4):1567-1594, 2008.
    • (2008) Ann. Statist. , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 28
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • T. Zhang. On the consistency of feature selection using greedy least squares regression. J. Mach. Learn. Res., 10:555-568, 2009a.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 555-568
    • Zhang, T.1
  • 29
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with l1 regularization
    • T. Zhang. Some sharp performance bounds for least squares regression with l1 regularization. Ann. Statist., 7(5A):2109-2144, 2009b.
    • (2009) Ann. Statist. , vol.7 , Issue.5 A , pp. 2109-2144
    • Zhang, T.1
  • 30
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • P. Zhao and B. Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541-2563, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.