메뉴 건너뛰기




Volumn 33, Issue 3, 2011, Pages 301-315

Optimal locality regularized least squares support vector machine via alternating optimization

Author keywords

Least squares classifier; Locality preserving criterion; Structural risk minimization; Support vector machine

Indexed keywords

BENCHMARK DATA; DATA SAMPLE; ITERATIVE LEAST SQUARES; LEAST SQUARES CLASSIFIER; LEAST SQUARES SUPPORT VECTOR MACHINES; LOCAL STRUCTURE; LOCALITY PRESERVING CRITERION; MANIFOLD LEARNING; OPTIMIZATION METHOD; OPTIMIZATION PROBLEMS; REGULARIZED LEAST SQUARES; SIMULTANEOUS OPTIMIZATION; STRUCTURAL RISK MINIMIZATION; UNIFIED FRAMEWORK;

EID: 79956100012     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-011-9179-8     Document Type: Article
Times cited : (13)

References (24)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • DOI 10.1023/A:1009715923555
    • CJC Burges 1998 A tutorial on support vector machines for pattern recognition Data Min Knowl Discov 2 2 121 167 10.1023/A:1009715923555 (Pubitemid 128126769)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-168
    • Burges, C.J.C.1
  • 4
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf C.J.C. Burges A.J. Smola (eds). MIT Press Cambridge, MA
    • Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel Methods: support vector learning. MIT Press, Cambridge, MA, pp 185-208
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 5
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • B. Schölkopf C.J.C. Burges A.J. Smola (eds). MIT Press Cambridge, MA
    • Joachims T (1999) Making large-scale support vector machine learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel Methods: support vector learning. MIT Press, Cambridge, MA, pp 169-184
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 7
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • 1721843 10.1023/A:1018628609742
    • JAK Suykens J Vandewalle 1999 Least squares support vector machine classifiers Neural Process Lett 9 3 293 300 1721843 10.1023/A:1018628609742
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 8
    • 33748862421 scopus 로고    scopus 로고
    • Rule-based learning systems for support vector machines
    • DOI 10.1007/s11063-006-9007-8
    • H Núñez C Angulo A Català 2006 Rule based learning systems for support vector machines Neural Process Lett 24 1 1 18 10.1007/s11063-006-9007-8 (Pubitemid 44421303)
    • (2006) Neural Processing Letters , vol.24 , Issue.1 , pp. 1-18
    • Nunez, H.1    Angulo, C.2    Catala, A.3
  • 9
    • 34547446205 scopus 로고    scopus 로고
    • Structured large margin machines: Sensitive to data distributions
    • DOI 10.1007/s10994-007-5015-9
    • DS Yeung D Wang WWY Ng ECC Tsang X Zhao 2007 Structured large margin machines: sensitive to data distributions Mach Learn 68 171 200 10.1007/s10994-007-5015-9 (Pubitemid 47165758)
    • (2007) Machine Learning , vol.68 , Issue.2 , pp. 171-200
    • Yeung, D.S.1    Wang, D.2    Ng, W.W.Y.3    Tsang, E.C.C.4    Wang, X.5
  • 13
    • 77049116966 scopus 로고    scopus 로고
    • Graph-optimized locality preserving projections
    • 1191.68611 10.1016/j.patcog.2009.12.022
    • LM Zhang LS Qiao SC Chen 2010 Graph-optimized locality preserving projections Pattern Recognit 43 6 1993 2002 1191.68611 10.1016/j.patcog.2009.12. 022
    • (2010) Pattern Recognit , vol.43 , Issue.6 , pp. 1993-2002
    • Zhang, L.M.1    Qiao, L.S.2    Chen, S.C.3
  • 14
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M Belkin P Niyogi V Sindhwani 2006 Manifold regularization: a geometric framework for learning from labeled and unlabeled examples J Mach Learn Res 7 2399 2434 2274444 (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 18
    • 40649092045 scopus 로고    scopus 로고
    • Low rank updated LS-SVM classifiers for fast variable selection
    • DOI 10.1016/j.neunet.2007.12.053, PII S0893608008000038
    • F Ojeda JAK Suykens BD Moor 2008 Low rank updated LS-SVM classifiers for fast variable selection Neural Netw 21 2-3 437 449 10.1016/j.neunet.2007.12.053 (Pubitemid 351375368)
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 437-449
    • Ojeda, F.1    Suykens, J.A.K.2    De Moor, B.3
  • 22
    • 77957596220 scopus 로고    scopus 로고
    • MOSEK ApS Version 5.0. Software available at
    • MOSEK ApS (2008) The MOSEK optimization tools manual. Version 5.0. Software available at http://www.mosek.com
    • (2008) The MOSEK Optimization Tools Manual


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.