메뉴 건너뛰기




Volumn 64, Issue 2, 2013, Pages 321-347

ParNes: A rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals

Author keywords

Basis pursuit; Compressed sensing; Convex minimization; Duality; lasso; Nesterov's method; Newton's method; Pareto curve

Indexed keywords


EID: 84884202492     PISSN: 10171398     EISSN: 15729265     Source Type: Journal    
DOI: 10.1007/s11075-012-9668-5     Document Type: Article
Times cited : (14)

References (41)
  • 1
    • 77955783919 scopus 로고    scopus 로고
    • Fast image recovery using variable splitting and constrained optimization
    • Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345-2356 (2010).
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2345-2356
    • Afonso, M.1    Bioucas-Dias, J.2    Figueiredo, M.3
  • 3
    • 0001531895 scopus 로고
    • Two point step size gradient method
    • Barzilai, J., Borwein, J.: Two point step size gradient method. IMA J. Numer. Anal. 8(1), 141-148 (1988).
    • (1988) IMA J. Numer. Anal. , vol.8 , Issue.1 , pp. 141-148
    • Barzilai, J.1    Borwein, J.2
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • Fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., Teboulle, M.: Fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183-202 (2009).
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 5
    • 79551550744 scopus 로고    scopus 로고
    • nesta: a fast and accurate first-order method for sparse recovery
    • Becker, S., Bobin, J., Candès, E. J.: nesta: a fast and accurate first-order method for sparse recovery. SIAM J. Imag. Sci. 4(1), 1-39 (2011).
    • (2011) SIAM J. Imag. Sci. , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candès, E.J.3
  • 7
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected-gradient methods on convex sets
    • Birgin, E., Martínez, J., Raydan, M.: Nonmonotone spectral projected-gradient methods on convex sets. SIAM J. Optim. 10(4), 1196-1211 (2000).
    • (2000) SIAM J. Optim. , vol.10 , Issue.4 , pp. 1196-1211
    • Birgin, E.1    Martínez, J.2    Raydan, M.3
  • 9
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • Candès, E. J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346(9-10), 589-592 (2008).
    • (2008) C. R. Math. Acad. Sci. Paris , vol.346 , Issue.9-10 , pp. 589-592
    • Candès, E.J.1
  • 10
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candès, E. J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313-2351 (2007).
    • (2007) Ann. Stat. , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.J.1    Tao, T.2
  • 11
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Candès, E. J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207-1223 (2006).
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 12
  • 14
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution
    • 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797-829 (2006).
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 17
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
    • Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586-597 (2007).
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.1    Nowak, R.2    Wright, S.3
  • 20
    • 2942640138 scopus 로고    scopus 로고
    • On sparse representations in arbitrary redundant bases
    • Fuchs, J. J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50(6), 1344 (2004).
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.6 , pp. 1344
    • Fuchs, J.J.1
  • 22
    • 53349163971 scopus 로고    scopus 로고
    • 1-regularized minimization with applications to compressed sensing
    • Rice University Technical Report
    • 1-regularized minimization with applications to compressed sensing. Rice University Technical Report (2007).
    • (2007)
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 23
    • 69649095451 scopus 로고    scopus 로고
    • 1-minimization: methodology and convergence
    • 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107-1130 (2008).
    • (2008) SIAM J. Optim. , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 24
    • 84910115062 scopus 로고    scopus 로고
    • Sparseness-constrained data continuation with frames: applications to missing traces and aliased signals in 2/3-D
    • Hennenfent, G., Herrmann, F. J.: Sparseness-constrained data continuation with frames: applications to missing traces and aliased signals in 2/3-D. SEG Tech. Program Expanded Abstracts 24(1), 2162-2165 (2005).
    • (2005) SEG Tech. Program Expanded Abstracts , vol.24 , Issue.1 , pp. 2162-2165
    • Hennenfent, G.1    Herrmann, F.J.2
  • 25
    • 43549122094 scopus 로고    scopus 로고
    • Simply denoise: wavefield reconstruction via jittered undersampling
    • Hennenfent, G., Herrmann, F. J.: Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics 73(3), V19-V28 (2008).
    • (2008) Geophysics , vol.73 , Issue.3
    • Hennenfent, G.1    Herrmann, F.J.2
  • 26
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Natarajan, B. K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227-234 (1995).
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 28
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127-152 (2005).
    • (2005) Math. Program. , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 31
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne, M. R., Presnell, B., Turlach, B. A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389-403 (2000).
    • (2000) IMA J. Numer. Anal. , vol.20 , Issue.3 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 32
    • 0009268441 scopus 로고
    • Submersions and preimages of sets of measure zero
    • Ponomarev, S. P.: Submersions and preimages of sets of measure zero. Sib. Math. J. 28(1), 153-163 (1987).
    • (1987) Sib. Math. J. , vol.28 , Issue.1 , pp. 153-163
    • Ponomarev, S.P.1
  • 33
    • 85032751389 scopus 로고    scopus 로고
    • Imaging via compressive sensing
    • Romberg, J.: Imaging via compressive sensing. IEEE Trans. Signal Process. 25(2), 14-20 (2008).
    • (2008) IEEE Trans. Signal Process. , vol.25 , Issue.2 , pp. 14-20
    • Romberg, J.1
  • 34
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B Stat. Methodol. 58(1), 267-288 (1996).
    • (1996) J. R. Stat. Soc., Ser. B Stat. Methodol. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 35
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: convex programming methods for identifying sparse signals in noise
    • Tropp, J. A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030-1051 (2006).
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 37
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • van den Berg, E., Friedlander, M. P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890-912 (2008/09).
    • (2008) SIAM J. Sci. Comput. , vol.31 , Issue.2 , pp. 890-912
    • van der Berg, E.1    Friedlander, M.P.2
  • 39
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
    • Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832 (2010).
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.4 , pp. 1832
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 41
    • 84884207137 scopus 로고    scopus 로고
    • LLL, Jul. 30 2009
    • Yu, Y. L.: Nesterov's optimal gradient method. LLL, Jul. 30 2009 (2009). http://webdocs. cs. ualberta. ca/~yaoliang/Non-smooth%20Optimization. pdf.
    • (2009) Nesterov's optimal gradient method
    • Yu, Y.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.