-
1
-
-
78951476311
-
RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle
-
Albert B., Léger-Silvestre I., Normand C., Ostermaier M.K., Pérez-Fernández J., Panov K.I., Zomerdijk J.C., Schultz P., Gadal O. RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J.Cell Biol. 2011, 192:277-293.
-
(2011)
J.Cell Biol.
, vol.192
, pp. 277-293
-
-
Albert, B.1
Léger-Silvestre, I.2
Normand, C.3
Ostermaier, M.K.4
Pérez-Fernández, J.5
Panov, K.I.6
Zomerdijk, J.C.7
Schultz, P.8
Gadal, O.9
-
2
-
-
34547498469
-
Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription
-
Alic N., Ayoub N., Landrieux E., Favry E., Baudouin-Cornu P., Riva M., Carles C. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc. Natl. Acad. Sci. USA 2007, 104:10400-10405.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 10400-10405
-
-
Alic, N.1
Ayoub, N.2
Landrieux, E.3
Favry, E.4
Baudouin-Cornu, P.5
Riva, M.6
Carles, C.7
-
3
-
-
0022132080
-
Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases
-
Allison L.A., Moyle M., Shales M., Ingles C.J. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 1985, 42:599-610.
-
(1985)
Cell
, vol.42
, pp. 599-610
-
-
Allison, L.A.1
Moyle, M.2
Shales, M.3
Ingles, C.J.4
-
4
-
-
12944324227
-
A ratchet mechanism of transcription elongation and its control
-
Bar-Nahum G., Epshtein V., Ruckenstein A.E., Rafikov R., Mustaev A., Nudler E. A ratchet mechanism of transcription elongation and its control. Cell 2005, 120:183-193.
-
(2005)
Cell
, vol.120
, pp. 183-193
-
-
Bar-Nahum, G.1
Epshtein, V.2
Ruckenstein, A.E.3
Rafikov, R.4
Mustaev, A.5
Nudler, E.6
-
5
-
-
84155186290
-
Efficient transcription by RNA polymerase I using recombinant core factor
-
Bedwell G.J., Appling F.D., Anderson S.J., Schneider D.A. Efficient transcription by RNA polymerase I using recombinant core factor. Gene 2012, 492:94-99.
-
(2012)
Gene
, vol.492
, pp. 94-99
-
-
Bedwell, G.J.1
Appling, F.D.2
Anderson, S.J.3
Schneider, D.A.4
-
7
-
-
0036468364
-
Multisubunit RNA polymerases
-
Cramer P. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 2002, 12:89-97.
-
(2002)
Curr. Opin. Struct. Biol.
, vol.12
, pp. 89-97
-
-
Cramer, P.1
-
8
-
-
48249103199
-
Structure of eukaryotic RNA polymerases
-
Cramer P., Armache K.J., Baumli S., Benkert S., Brueckner F., Buchen C., Damsma G.E., Dengl S., Geiger S.R., Jasiak A.J., et al. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008, 37:337-352.
-
(2008)
Annu Rev Biophys
, vol.37
, pp. 337-352
-
-
Cramer, P.1
Armache, K.J.2
Baumli, S.3
Benkert, S.4
Brueckner, F.5
Buchen, C.6
Damsma, G.E.7
Dengl, S.8
Geiger, S.R.9
Jasiak, A.J.10
-
9
-
-
84863069608
-
Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II
-
Da L.T., Wang D., Huang X. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J.Am. Chem. Soc. 2012, 134:2399-2406.
-
(2012)
J.Am. Chem. Soc.
, vol.134
, pp. 2399-2406
-
-
Da, L.T.1
Wang, D.2
Huang, X.3
-
10
-
-
3042666256
-
MUSCLE: multiple sequence alignment with high accuracy and high throughput
-
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32:1792-1797.
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 1792-1797
-
-
Edgar, R.C.1
-
11
-
-
0141625269
-
Transcription through the roadblocks: the role of RNA polymerase cooperation
-
Epshtein V., Toulmé F., Rahmouni A.R., Borukhov S., Nudler E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 2003, 22:4719-4727.
-
(2003)
EMBO J.
, vol.22
, pp. 4719-4727
-
-
Epshtein, V.1
Toulmé, F.2
Rahmouni, A.R.3
Borukhov, S.4
Nudler, E.5
-
12
-
-
70549109331
-
Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases
-
Erie D.A., Kennedy S.R. Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases. Curr. Opin. Struct. Biol. 2009, 19:708-714.
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 708-714
-
-
Erie, D.A.1
Kennedy, S.R.2
-
13
-
-
78049347876
-
RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation
-
Feig M., Burton Z.F. RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Biophys. J. 2010, 99:2577-2586.
-
(2010)
Biophys. J.
, vol.99
, pp. 2577-2586
-
-
Feig, M.1
Burton, Z.F.2
-
14
-
-
0037370054
-
In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes
-
French S.L., Osheim Y.N., Cioci F., Nomura M., Beyer A.L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 2003, 23:1558-1568.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 1558-1568
-
-
French, S.L.1
Osheim, Y.N.2
Cioci, F.3
Nomura, M.4
Beyer, A.L.5
-
15
-
-
78751519300
-
Distinguishing the roles of Topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes
-
French S.L., Sikes M.L., Hontz R.D., Osheim Y.N., Lambert T.E., El Hage A., Smith M.M., Tollervey D., Smith J.S., Beyer A.L. Distinguishing the roles of Topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol. Cell. Biol. 2011, 31:482-494.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 482-494
-
-
French, S.L.1
Sikes, M.L.2
Hontz, R.D.3
Osheim, Y.N.4
Lambert, T.E.5
El Hage, A.6
Smith, M.M.7
Tollervey, D.8
Smith, J.S.9
Beyer, A.L.10
-
16
-
-
77955993009
-
RNA polymerase I contains a TFIIF-related DNA-binding subcomplex
-
Geiger S.R., Lorenzen K., Schreieck A., Hanecker P., Kostrewa D., Heck A.J., Cramer P. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol. Cell 2010, 39:583-594.
-
(2010)
Mol. Cell
, vol.39
, pp. 583-594
-
-
Geiger, S.R.1
Lorenzen, K.2
Schreieck, A.3
Hanecker, P.4
Kostrewa, D.5
Heck, A.J.6
Cramer, P.7
-
17
-
-
84863194842
-
Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage
-
Jennebach S., Herzog F., Aebersold R., Cramer P. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res. 2012, 40:5591-5601.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5591-5601
-
-
Jennebach, S.1
Herzog, F.2
Aebersold, R.3
Cramer, P.4
-
18
-
-
77954085619
-
The architecture of RNA polymerase fidelity
-
Kaplan C.D. The architecture of RNA polymerase fidelity. BMC Biol. 2010, 8:85.
-
(2010)
BMC Biol.
, vol.8
, pp. 85
-
-
Kaplan, C.D.1
-
19
-
-
69049106549
-
A bridge to transcription by RNA polymerase
-
Kaplan C.D., Kornberg R.D. A bridge to transcription by RNA polymerase. J.Biol. 2008, 7:39.
-
(2008)
J.Biol.
, vol.7
, pp. 39
-
-
Kaplan, C.D.1
Kornberg, R.D.2
-
20
-
-
44449103640
-
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin
-
Kaplan C.D., Larsson K.M., Kornberg R.D. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol. Cell 2008, 30:547-556.
-
(2008)
Mol. Cell
, vol.30
, pp. 547-556
-
-
Kaplan, C.D.1
Larsson, K.M.2
Kornberg, R.D.3
-
21
-
-
84860111277
-
Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection invivo
-
Kaplan C.D., Jin H., Zhang I.L., Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection invivo. PLoS Genet. 2012, 8:e1002627.
-
(2012)
PLoS Genet.
, vol.8
-
-
Kaplan, C.D.1
Jin, H.2
Zhang, I.L.3
Belyanin, A.4
-
22
-
-
0032509225
-
Reconstitution of yeast RNA polymerase I transcription invitro from purified components. TATA-binding protein is not required for basal transcription
-
Keener J., Josaitis C.A., Dodd J.A., Nomura M. Reconstitution of yeast RNA polymerase I transcription invitro from purified components. TATA-binding protein is not required for basal transcription. J.Biol. Chem. 1998, 273:33795-33802.
-
(1998)
J.Biol. Chem.
, vol.273
, pp. 33795-33802
-
-
Keener, J.1
Josaitis, C.A.2
Dodd, J.A.3
Nomura, M.4
-
23
-
-
10944232674
-
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
-
Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 2004, 16:955-965.
-
(2004)
Mol. Cell
, vol.16
, pp. 955-965
-
-
Kettenberger, H.1
Armache, K.J.2
Cramer, P.3
-
24
-
-
44449094019
-
Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation
-
Kireeva M.L., Nedialkov Y.A., Cremona G.H., Purtov Y.A., Lubkowska L., Malagon F., Burton Z.F., Strathern J.N., Kashlev M. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell 2008, 30:557-566.
-
(2008)
Mol. Cell
, vol.30
, pp. 557-566
-
-
Kireeva, M.L.1
Nedialkov, Y.A.2
Cremona, G.H.3
Purtov, Y.A.4
Lubkowska, L.5
Malagon, F.6
Burton, Z.F.7
Strathern, J.N.8
Kashlev, M.9
-
25
-
-
84870983295
-
Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase
-
Kireeva M.L., Opron K., Seibold S.A., Domecq C., Cukier R.I., Coulombe B., Kashlev M., Burton Z.F. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. BMC Biophys 2012, 5:11.
-
(2012)
BMC Biophys
, vol.5
, pp. 11
-
-
Kireeva, M.L.1
Opron, K.2
Seibold, S.A.3
Domecq, C.4
Cukier, R.I.5
Coulombe, B.6
Kashlev, M.7
Burton, Z.F.8
-
26
-
-
34249726498
-
Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast
-
Koyama H., Ito T., Nakanishi T., Sekimizu K. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast. Genes Cells 2007, 12:547-559.
-
(2007)
Genes Cells
, vol.12
, pp. 547-559
-
-
Koyama, H.1
Ito, T.2
Nakanishi, T.3
Sekimizu, K.4
-
27
-
-
37349041027
-
Functional architecture of RNA polymerase I
-
Kuhn C.D., Geiger S.R., Baumli S., Gartmann M., Gerber J., Jennebach S., Mielke T., Tschochner H., Beckmann R., Cramer P. Functional architecture of RNA polymerase I. Cell 2007, 131:1260-1272.
-
(2007)
Cell
, vol.131
, pp. 1260-1272
-
-
Kuhn, C.D.1
Geiger, S.R.2
Baumli, S.3
Gartmann, M.4
Gerber, J.5
Jennebach, S.6
Mielke, T.7
Tschochner, H.8
Beckmann, R.9
Cramer, P.10
-
28
-
-
67049154068
-
Transcriptional pausing without backtracking
-
Landick R. Transcriptional pausing without backtracking. Proc. Natl. Acad. Sci. USA 2009, 106:8797-8798.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 8797-8798
-
-
Landick, R.1
-
29
-
-
84860211901
-
Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II
-
Larson M.H., Zhou J., Kaplan C.D., Palangat M., Kornberg R.D., Landick R., Block S.M. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc. Natl. Acad. Sci. USA 2012, 109:6555-6560.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 6555-6560
-
-
Larson, M.H.1
Zhou, J.2
Kaplan, C.D.3
Palangat, M.4
Kornberg, R.D.5
Landick, R.6
Block, S.M.7
-
30
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine M.S., McKenzie A., Demarini D.J., Shah N.G., Wach A., Brachat A., Philippsen P., Pringle J.R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998, 14:953-961.
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
31
-
-
33646188087
-
Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil
-
Malagon F., Kireeva M.L., Shafer B.K., Lubkowska L., Kashlev M., Strathern J.N. Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics 2006, 172:2201-2209.
-
(2006)
Genetics
, vol.172
, pp. 2201-2209
-
-
Malagon, F.1
Kireeva, M.L.2
Shafer, B.K.3
Lubkowska, L.4
Kashlev, M.5
Strathern, J.N.6
-
32
-
-
79953855317
-
A unified model of transcription elongation: what have we learned from single-molecule experiments?
-
Maoiléidigh D.O., Tadigotla V.R., Nudler E., Ruckenstein A.E. A unified model of transcription elongation: what have we learned from single-molecule experiments?. Biophys. J. 2011, 100:1157-1166.
-
(2011)
Biophys. J.
, vol.100
, pp. 1157-1166
-
-
Maoiléidigh, D.O.1
Tadigotla, V.R.2
Nudler, E.3
Ruckenstein, A.E.4
-
33
-
-
84875445608
-
CDD: conserved domains and protein three-dimensional structure
-
Marchler-Bauer A., Zheng C., Chitsaz F., Derbyshire M.K., Geer L.Y., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Lanczycki C.J., et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 2013, 41(Database issue):D348-D352.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.DATABASE ISSUE
-
-
Marchler-Bauer, A.1
Zheng, C.2
Chitsaz, F.3
Derbyshire, M.K.4
Geer, L.Y.5
Geer, R.C.6
Gonzales, N.R.7
Gwadz, M.8
Hurwitz, D.I.9
Lanczycki, C.J.10
-
35
-
-
84880839662
-
Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase
-
Nayak D., Voss M., Windgassen T., Mooney R.A., Landick R. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol. Cell 2013, 50:882-893.
-
(2013)
Mol. Cell
, vol.50
, pp. 882-893
-
-
Nayak, D.1
Voss, M.2
Windgassen, T.3
Mooney, R.A.4
Landick, R.5
-
36
-
-
0027390138
-
Gene RRN4 in Saccharomyces cerevisiae encodes the A12.2 subunit of RNA polymerase I and is essential only at high temperatures
-
Nogi Y., Yano R., Dodd J., Carles C., Nomura M. Gene RRN4 in Saccharomyces cerevisiae encodes the A12.2 subunit of RNA polymerase I and is essential only at high temperatures. Mol. Cell. Biol. 1993, 13:114-122.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 114-122
-
-
Nogi, Y.1
Yano, R.2
Dodd, J.3
Carles, C.4
Nomura, M.5
-
37
-
-
0014683539
-
Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms
-
Roeder R.G., Rutter W.J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 1969, 224:234-237.
-
(1969)
Nature
, vol.224
, pp. 234-237
-
-
Roeder, R.G.1
Rutter, W.J.2
-
38
-
-
67651095903
-
Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes
-
Saeki H., Svejstrup J.Q. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol. Cell 2009, 35:191-205.
-
(2009)
Mol. Cell
, vol.35
, pp. 191-205
-
-
Saeki, H.1
Svejstrup, J.Q.2
-
39
-
-
84555178842
-
Quantitative analysis of transcription elongation by RNA polymerase I invitro
-
Schneider D.A. Quantitative analysis of transcription elongation by RNA polymerase I invitro. Methods Mol. Biol. 2012, 809:579-591.
-
(2012)
Methods Mol. Biol.
, vol.809
, pp. 579-591
-
-
Schneider, D.A.1
-
40
-
-
34247203761
-
Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly
-
Schneider D.A., Michel A., Sikes M.L., Vu L., Dodd J.A., Salgia S., Osheim Y.N., Beyer A.L., Nomura M. Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol. Cell 2007, 26:217-229.
-
(2007)
Mol. Cell
, vol.26
, pp. 217-229
-
-
Schneider, D.A.1
Michel, A.2
Sikes, M.L.3
Vu, L.4
Dodd, J.A.5
Salgia, S.6
Osheim, Y.N.7
Beyer, A.L.8
Nomura, M.9
-
41
-
-
0003549085
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, F. Sherman, G.R. Fink, J.B. Hicks (Eds.)
-
The Laboratory Course Manual for Methods in Yeast Genetics 1986, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. F. Sherman, G.R. Fink, J.B. Hicks (Eds.).
-
(1986)
The Laboratory Course Manual for Methods in Yeast Genetics
-
-
-
42
-
-
0026090063
-
Invitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast
-
Sikorski R.S., Boeke J.D. Invitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 1991, 194:302-318.
-
(1991)
Methods Enzymol.
, vol.194
, pp. 302-318
-
-
Sikorski, R.S.1
Boeke, J.D.2
-
43
-
-
70549111391
-
RNA polymerase fidelity and transcriptional proofreading
-
Sydow J.F., Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr. Opin. Struct. Biol. 2009, 19:732-739.
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 732-739
-
-
Sydow, J.F.1
Cramer, P.2
-
44
-
-
57249108333
-
Bridge helix and trigger loop perturbations generate superactive RNA polymerases
-
Tan L., Wiesler S., Trzaska D., Carney H.C., Weinzierl R.O. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J.Biol. 2008, 7:40.
-
(2008)
J.Biol.
, vol.7
, pp. 40
-
-
Tan, L.1
Wiesler, S.2
Trzaska, D.3
Carney, H.C.4
Weinzierl, R.O.5
-
45
-
-
34547204502
-
A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
-
Toulokhonov I., Zhang J., Palangat M., Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 2007, 27:406-419.
-
(2007)
Mol. Cell
, vol.27
, pp. 406-419
-
-
Toulokhonov, I.1
Zhang, J.2
Palangat, M.3
Landick, R.4
-
46
-
-
34447513771
-
Structural basis for substrate loading in bacterial RNA polymerase
-
Vassylyev D.G., Vassylyeva M.N., Zhang J., Palangat M., Artsimovitch I., Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 2007, 448:163-168.
-
(2007)
Nature
, vol.448
, pp. 163-168
-
-
Vassylyev, D.G.1
Vassylyeva, M.N.2
Zhang, J.3
Palangat, M.4
Artsimovitch, I.5
Landick, R.6
-
47
-
-
33751235874
-
Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis
-
Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., Kornberg R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006, 127:941-954.
-
(2006)
Cell
, vol.127
, pp. 941-954
-
-
Wang, D.1
Bushnell, D.A.2
Westover, K.D.3
Kaplan, C.D.4
Kornberg, R.D.5
-
48
-
-
0033229970
-
The economics of ribosome biosynthesis in yeast
-
Warner J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 1999, 24:437-440.
-
(1999)
Trends Biochem. Sci.
, vol.24
, pp. 437-440
-
-
Warner, J.R.1
-
49
-
-
65449188232
-
Jalview Version 2-a multiple sequence alignment editor and analysis workbench
-
Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
-
(2009)
Bioinformatics
, vol.25
, pp. 1189-1191
-
-
Waterhouse, A.M.1
Procter, J.B.2
Martin, D.M.3
Clamp, M.4
Barton, G.J.5
-
50
-
-
84873323216
-
Structural basis of transcriptional pausing in bacteria
-
Weixlbaumer A., Leon K., Landick R., Darst S.A. Structural basis of transcriptional pausing in bacteria. Cell 2013, 152:431-441.
-
(2013)
Cell
, vol.152
, pp. 431-441
-
-
Weixlbaumer, A.1
Leon, K.2
Landick, R.3
Darst, S.A.4
-
51
-
-
77951973031
-
Stepwise mechanism for transcription fidelity
-
Yuzenkova Y., Bochkareva A., Tadigotla V.R., Roghanian M., Zorov S., Severinov K., Zenkin N. Stepwise mechanism for transcription fidelity. BMC Biol. 2010, 8:54.
-
(2010)
BMC Biol.
, vol.8
, pp. 54
-
-
Yuzenkova, Y.1
Bochkareva, A.2
Tadigotla, V.R.3
Roghanian, M.4
Zorov, S.5
Severinov, K.6
Zenkin, N.7
-
52
-
-
77449093660
-
Role of the RNA polymerase trigger loop in catalysis and pausing
-
Zhang J., Palangat M., Landick R. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat. Struct. Mol. Biol. 2010, 17:99-104.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 99-104
-
-
Zhang, J.1
Palangat, M.2
Landick, R.3
-
53
-
-
77952002828
-
The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis
-
Zhang Y., Smith A.D., Renfrow M.B., Schneider D.A. The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J.Biol. Chem. 2010, 285:14152-14159.
-
(2010)
J.Biol. Chem.
, vol.285
, pp. 14152-14159
-
-
Zhang, Y.1
Smith, A.D.2
Renfrow, M.B.3
Schneider, D.A.4
|