메뉴 건너뛰기




Volumn 4, Issue 5, 2013, Pages 974-984

Divergent contributions of conserved active site residues to transcription by Eukaryotic RNA polymerases I and II

Author keywords

[No Author keywords available]

Indexed keywords

DNA DIRECTED RNA POLYMERASE; RIBOSOME DNA; RNA POLYMERASE; RNA POLYMERASE II;

EID: 84884125881     PISSN: None     EISSN: 22111247     Source Type: Journal    
DOI: 10.1016/j.celrep.2013.07.044     Document Type: Article
Times cited : (27)

References (53)
  • 2
    • 34547498469 scopus 로고    scopus 로고
    • Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription
    • Alic N., Ayoub N., Landrieux E., Favry E., Baudouin-Cornu P., Riva M., Carles C. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc. Natl. Acad. Sci. USA 2007, 104:10400-10405.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 10400-10405
    • Alic, N.1    Ayoub, N.2    Landrieux, E.3    Favry, E.4    Baudouin-Cornu, P.5    Riva, M.6    Carles, C.7
  • 3
    • 0022132080 scopus 로고
    • Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases
    • Allison L.A., Moyle M., Shales M., Ingles C.J. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 1985, 42:599-610.
    • (1985) Cell , vol.42 , pp. 599-610
    • Allison, L.A.1    Moyle, M.2    Shales, M.3    Ingles, C.J.4
  • 5
    • 84155186290 scopus 로고    scopus 로고
    • Efficient transcription by RNA polymerase I using recombinant core factor
    • Bedwell G.J., Appling F.D., Anderson S.J., Schneider D.A. Efficient transcription by RNA polymerase I using recombinant core factor. Gene 2012, 492:94-99.
    • (2012) Gene , vol.492 , pp. 94-99
    • Bedwell, G.J.1    Appling, F.D.2    Anderson, S.J.3    Schneider, D.A.4
  • 6
    • 66549126163 scopus 로고    scopus 로고
    • A movie of the RNA polymerase nucleotide addition cycle
    • Brueckner F., Ortiz J., Cramer P. A movie of the RNA polymerase nucleotide addition cycle. Curr. Opin. Struct. Biol. 2009, 19:294-299.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 294-299
    • Brueckner, F.1    Ortiz, J.2    Cramer, P.3
  • 7
    • 0036468364 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases
    • Cramer P. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 2002, 12:89-97.
    • (2002) Curr. Opin. Struct. Biol. , vol.12 , pp. 89-97
    • Cramer, P.1
  • 9
    • 84863069608 scopus 로고    scopus 로고
    • Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II
    • Da L.T., Wang D., Huang X. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J.Am. Chem. Soc. 2012, 134:2399-2406.
    • (2012) J.Am. Chem. Soc. , vol.134 , pp. 2399-2406
    • Da, L.T.1    Wang, D.2    Huang, X.3
  • 10
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: multiple sequence alignment with high accuracy and high throughput
    • Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32:1792-1797.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 11
    • 0141625269 scopus 로고    scopus 로고
    • Transcription through the roadblocks: the role of RNA polymerase cooperation
    • Epshtein V., Toulmé F., Rahmouni A.R., Borukhov S., Nudler E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 2003, 22:4719-4727.
    • (2003) EMBO J. , vol.22 , pp. 4719-4727
    • Epshtein, V.1    Toulmé, F.2    Rahmouni, A.R.3    Borukhov, S.4    Nudler, E.5
  • 12
    • 70549109331 scopus 로고    scopus 로고
    • Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases
    • Erie D.A., Kennedy S.R. Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases. Curr. Opin. Struct. Biol. 2009, 19:708-714.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 708-714
    • Erie, D.A.1    Kennedy, S.R.2
  • 13
    • 78049347876 scopus 로고    scopus 로고
    • RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation
    • Feig M., Burton Z.F. RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Biophys. J. 2010, 99:2577-2586.
    • (2010) Biophys. J. , vol.99 , pp. 2577-2586
    • Feig, M.1    Burton, Z.F.2
  • 14
    • 0037370054 scopus 로고    scopus 로고
    • In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes
    • French S.L., Osheim Y.N., Cioci F., Nomura M., Beyer A.L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 2003, 23:1558-1568.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1558-1568
    • French, S.L.1    Osheim, Y.N.2    Cioci, F.3    Nomura, M.4    Beyer, A.L.5
  • 17
    • 84863194842 scopus 로고    scopus 로고
    • Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage
    • Jennebach S., Herzog F., Aebersold R., Cramer P. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res. 2012, 40:5591-5601.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 5591-5601
    • Jennebach, S.1    Herzog, F.2    Aebersold, R.3    Cramer, P.4
  • 18
    • 77954085619 scopus 로고    scopus 로고
    • The architecture of RNA polymerase fidelity
    • Kaplan C.D. The architecture of RNA polymerase fidelity. BMC Biol. 2010, 8:85.
    • (2010) BMC Biol. , vol.8 , pp. 85
    • Kaplan, C.D.1
  • 19
    • 69049106549 scopus 로고    scopus 로고
    • A bridge to transcription by RNA polymerase
    • Kaplan C.D., Kornberg R.D. A bridge to transcription by RNA polymerase. J.Biol. 2008, 7:39.
    • (2008) J.Biol. , vol.7 , pp. 39
    • Kaplan, C.D.1    Kornberg, R.D.2
  • 20
    • 44449103640 scopus 로고    scopus 로고
    • The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin
    • Kaplan C.D., Larsson K.M., Kornberg R.D. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol. Cell 2008, 30:547-556.
    • (2008) Mol. Cell , vol.30 , pp. 547-556
    • Kaplan, C.D.1    Larsson, K.M.2    Kornberg, R.D.3
  • 21
    • 84860111277 scopus 로고    scopus 로고
    • Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection invivo
    • Kaplan C.D., Jin H., Zhang I.L., Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection invivo. PLoS Genet. 2012, 8:e1002627.
    • (2012) PLoS Genet. , vol.8
    • Kaplan, C.D.1    Jin, H.2    Zhang, I.L.3    Belyanin, A.4
  • 22
    • 0032509225 scopus 로고    scopus 로고
    • Reconstitution of yeast RNA polymerase I transcription invitro from purified components. TATA-binding protein is not required for basal transcription
    • Keener J., Josaitis C.A., Dodd J.A., Nomura M. Reconstitution of yeast RNA polymerase I transcription invitro from purified components. TATA-binding protein is not required for basal transcription. J.Biol. Chem. 1998, 273:33795-33802.
    • (1998) J.Biol. Chem. , vol.273 , pp. 33795-33802
    • Keener, J.1    Josaitis, C.A.2    Dodd, J.A.3    Nomura, M.4
  • 23
    • 10944232674 scopus 로고    scopus 로고
    • Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
    • Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 2004, 16:955-965.
    • (2004) Mol. Cell , vol.16 , pp. 955-965
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 26
    • 34249726498 scopus 로고    scopus 로고
    • Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast
    • Koyama H., Ito T., Nakanishi T., Sekimizu K. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast. Genes Cells 2007, 12:547-559.
    • (2007) Genes Cells , vol.12 , pp. 547-559
    • Koyama, H.1    Ito, T.2    Nakanishi, T.3    Sekimizu, K.4
  • 28
    • 67049154068 scopus 로고    scopus 로고
    • Transcriptional pausing without backtracking
    • Landick R. Transcriptional pausing without backtracking. Proc. Natl. Acad. Sci. USA 2009, 106:8797-8798.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 8797-8798
    • Landick, R.1
  • 30
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine M.S., McKenzie A., Demarini D.J., Shah N.G., Wach A., Brachat A., Philippsen P., Pringle J.R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998, 14:953-961.
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1    McKenzie, A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5    Brachat, A.6    Philippsen, P.7    Pringle, J.R.8
  • 31
    • 33646188087 scopus 로고    scopus 로고
    • Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil
    • Malagon F., Kireeva M.L., Shafer B.K., Lubkowska L., Kashlev M., Strathern J.N. Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics 2006, 172:2201-2209.
    • (2006) Genetics , vol.172 , pp. 2201-2209
    • Malagon, F.1    Kireeva, M.L.2    Shafer, B.K.3    Lubkowska, L.4    Kashlev, M.5    Strathern, J.N.6
  • 32
    • 79953855317 scopus 로고    scopus 로고
    • A unified model of transcription elongation: what have we learned from single-molecule experiments?
    • Maoiléidigh D.O., Tadigotla V.R., Nudler E., Ruckenstein A.E. A unified model of transcription elongation: what have we learned from single-molecule experiments?. Biophys. J. 2011, 100:1157-1166.
    • (2011) Biophys. J. , vol.100 , pp. 1157-1166
    • Maoiléidigh, D.O.1    Tadigotla, V.R.2    Nudler, E.3    Ruckenstein, A.E.4
  • 35
    • 84880839662 scopus 로고    scopus 로고
    • Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase
    • Nayak D., Voss M., Windgassen T., Mooney R.A., Landick R. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol. Cell 2013, 50:882-893.
    • (2013) Mol. Cell , vol.50 , pp. 882-893
    • Nayak, D.1    Voss, M.2    Windgassen, T.3    Mooney, R.A.4    Landick, R.5
  • 36
    • 0027390138 scopus 로고
    • Gene RRN4 in Saccharomyces cerevisiae encodes the A12.2 subunit of RNA polymerase I and is essential only at high temperatures
    • Nogi Y., Yano R., Dodd J., Carles C., Nomura M. Gene RRN4 in Saccharomyces cerevisiae encodes the A12.2 subunit of RNA polymerase I and is essential only at high temperatures. Mol. Cell. Biol. 1993, 13:114-122.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 114-122
    • Nogi, Y.1    Yano, R.2    Dodd, J.3    Carles, C.4    Nomura, M.5
  • 37
    • 0014683539 scopus 로고
    • Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms
    • Roeder R.G., Rutter W.J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 1969, 224:234-237.
    • (1969) Nature , vol.224 , pp. 234-237
    • Roeder, R.G.1    Rutter, W.J.2
  • 38
    • 67651095903 scopus 로고    scopus 로고
    • Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes
    • Saeki H., Svejstrup J.Q. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol. Cell 2009, 35:191-205.
    • (2009) Mol. Cell , vol.35 , pp. 191-205
    • Saeki, H.1    Svejstrup, J.Q.2
  • 39
    • 84555178842 scopus 로고    scopus 로고
    • Quantitative analysis of transcription elongation by RNA polymerase I invitro
    • Schneider D.A. Quantitative analysis of transcription elongation by RNA polymerase I invitro. Methods Mol. Biol. 2012, 809:579-591.
    • (2012) Methods Mol. Biol. , vol.809 , pp. 579-591
    • Schneider, D.A.1
  • 41
    • 0003549085 scopus 로고
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, F. Sherman, G.R. Fink, J.B. Hicks (Eds.)
    • The Laboratory Course Manual for Methods in Yeast Genetics 1986, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. F. Sherman, G.R. Fink, J.B. Hicks (Eds.).
    • (1986) The Laboratory Course Manual for Methods in Yeast Genetics
  • 42
    • 0026090063 scopus 로고
    • Invitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast
    • Sikorski R.S., Boeke J.D. Invitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 1991, 194:302-318.
    • (1991) Methods Enzymol. , vol.194 , pp. 302-318
    • Sikorski, R.S.1    Boeke, J.D.2
  • 43
    • 70549111391 scopus 로고    scopus 로고
    • RNA polymerase fidelity and transcriptional proofreading
    • Sydow J.F., Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr. Opin. Struct. Biol. 2009, 19:732-739.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 732-739
    • Sydow, J.F.1    Cramer, P.2
  • 44
    • 57249108333 scopus 로고    scopus 로고
    • Bridge helix and trigger loop perturbations generate superactive RNA polymerases
    • Tan L., Wiesler S., Trzaska D., Carney H.C., Weinzierl R.O. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J.Biol. 2008, 7:40.
    • (2008) J.Biol. , vol.7 , pp. 40
    • Tan, L.1    Wiesler, S.2    Trzaska, D.3    Carney, H.C.4    Weinzierl, R.O.5
  • 45
    • 34547204502 scopus 로고    scopus 로고
    • A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
    • Toulokhonov I., Zhang J., Palangat M., Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 2007, 27:406-419.
    • (2007) Mol. Cell , vol.27 , pp. 406-419
    • Toulokhonov, I.1    Zhang, J.2    Palangat, M.3    Landick, R.4
  • 47
    • 33751235874 scopus 로고    scopus 로고
    • Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis
    • Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., Kornberg R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006, 127:941-954.
    • (2006) Cell , vol.127 , pp. 941-954
    • Wang, D.1    Bushnell, D.A.2    Westover, K.D.3    Kaplan, C.D.4    Kornberg, R.D.5
  • 48
    • 0033229970 scopus 로고    scopus 로고
    • The economics of ribosome biosynthesis in yeast
    • Warner J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 1999, 24:437-440.
    • (1999) Trends Biochem. Sci. , vol.24 , pp. 437-440
    • Warner, J.R.1
  • 49
    • 65449188232 scopus 로고    scopus 로고
    • Jalview Version 2-a multiple sequence alignment editor and analysis workbench
    • Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
    • (2009) Bioinformatics , vol.25 , pp. 1189-1191
    • Waterhouse, A.M.1    Procter, J.B.2    Martin, D.M.3    Clamp, M.4    Barton, G.J.5
  • 50
    • 84873323216 scopus 로고    scopus 로고
    • Structural basis of transcriptional pausing in bacteria
    • Weixlbaumer A., Leon K., Landick R., Darst S.A. Structural basis of transcriptional pausing in bacteria. Cell 2013, 152:431-441.
    • (2013) Cell , vol.152 , pp. 431-441
    • Weixlbaumer, A.1    Leon, K.2    Landick, R.3    Darst, S.A.4
  • 52
    • 77449093660 scopus 로고    scopus 로고
    • Role of the RNA polymerase trigger loop in catalysis and pausing
    • Zhang J., Palangat M., Landick R. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat. Struct. Mol. Biol. 2010, 17:99-104.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 99-104
    • Zhang, J.1    Palangat, M.2    Landick, R.3
  • 53
    • 77952002828 scopus 로고    scopus 로고
    • The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis
    • Zhang Y., Smith A.D., Renfrow M.B., Schneider D.A. The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J.Biol. Chem. 2010, 285:14152-14159.
    • (2010) J.Biol. Chem. , vol.285 , pp. 14152-14159
    • Zhang, Y.1    Smith, A.D.2    Renfrow, M.B.3    Schneider, D.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.