메뉴 건너뛰기




Volumn 18, Issue 3, 2013, Pages 368-384

A Method for efficiently sampling from distributions with correlated dimensions

Author keywords

Differential evolution; Hierarchical Bayesian estimation; Linear ballistic accumulator model; Optimal transition kernel; Response time

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; EPIDEMIOLOGY; HUMAN; MONTE CARLO METHOD; PSYCHOMETRY; STATISTICAL MODEL;

EID: 84883829687     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/a0032222     Document Type: Article
Times cited : (212)

References (64)
  • 2
    • 12344283816 scopus 로고    scopus 로고
    • A ballistic model of choice response time
    • Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112, 117-128.
    • (2005) Psychological Review , vol.112 , pp. 117-128
    • Brown, S.1    Heathcote, A.2
  • 3
    • 52749091564 scopus 로고    scopus 로고
    • The simplest complete model of choice reaction time: Linear ballistic accumulation
    • Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice reaction time: Linear ballistic accumulation. Cognitive Psychology, 57, 153-178.
    • (2008) Cognitive Psychology , vol.57 , pp. 153-178
    • Brown, S.D.1    Heathcote, A.2
  • 4
    • 78649497600 scopus 로고    scopus 로고
    • Hierarchical Bayes models for response time data
    • Craigmile, P. F., Peruggia, M., & Van Zandt, T. (2010). Hierarchical Bayes models for response time data. Psychometrika, 75, 613-632.
    • (2010) Psychometrika , vol.75 , pp. 613-632
    • Craigmile, P.F.1    Peruggia, M.2    Van Zandt, T.3
  • 5
    • 74849101896 scopus 로고    scopus 로고
    • Getting more from accuracy and response time data: Methods for fitting the linear ballistic accumulator
    • Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting more from accuracy and response time data: Methods for fitting the linear ballistic accumulator. Behavior Research Methods, 41, 1095-1110.
    • (2009) Behavior Research Methods , vol.41 , pp. 1095-1110
    • Donkin, C.1    Averell, L.2    Brown, S.3    Heathcote, A.4
  • 6
    • 79952815474 scopus 로고    scopus 로고
    • Drawing conclusions from choice response time models: A tutorial
    • Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice response time models: A tutorial. Journal of Mathematical Psychology, 55, 140-151.
    • (2011) Journal of Mathematical Psychology , vol.55 , pp. 140-151
    • Donkin, C.1    Brown, S.2    Heathcote, A.3
  • 7
    • 85050211180 scopus 로고    scopus 로고
    • Is the linear ballistic accumulator model really the simplest model of choice response times: A Bayesian model complexity analysis
    • A. Howes, D. Peebles, & R. Cooper (Eds.)
    • Donkin, C., Heathcote, A., & Brown, S. (2009). Is the linear ballistic accumulator model really the simplest model of choice response times: A Bayesian model complexity analysis. In A. Howes, D. Peebles, & R. Cooper (Eds.), Proceedings of the 9th International Conference on Cognitive Modeling. Retrieved from http://iccm-conference.org/iccmarchive/2009/sideshow.psyc.bbk.ac.uk/rcooper/iccm2009/proceedings/
    • (2009) Proceedings of the 9th International Conference on Cognitive Modeling
    • Donkin, C.1    Heathcote, A.2    Brown, S.3
  • 9
    • 77956060011 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo approach to confirmatory item factor analysis
    • Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75, 474-497.
    • (2010) Psychometrika , vol.75 , pp. 474-497
    • Edwards, M.C.1
  • 10
    • 59049101673 scopus 로고    scopus 로고
    • Bayesian and maximum likelihood estimation of hierarchical response time models
    • Farrell, S., & Ludwig, C. J. H. (2008). Bayesian and maximum likelihood estimation of hierarchical response time models. Psychonomic Bulletin & Review, 15, 1209-1217.
    • (2008) Psychonomic Bulletin & Review , vol.15 , pp. 1209-1217
    • Farrell, S.1    Ludwig, C.J.H.2
  • 15
    • 79956217022 scopus 로고    scopus 로고
    • A topographic latent souce model for fMRI data
    • Gershman, S. J., Blei, D. M., Pereira, F., & Norman, K. A. (2011). A topographic latent souce model for fMRI data. NeuroImage, 57, 89-100.
    • (2011) NeuroImage , vol.57 , pp. 89-100
    • Gershman, S.J.1    Blei, D.M.2    Pereira, F.3    Norman, K.A.4
  • 16
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 44, 455-472.
    • (1995) Applied Statistics , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 17
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 20
    • 64649103349 scopus 로고    scopus 로고
    • Evaluating cognitive theory: A joint modeling approach using responses and response times
    • Klein Entink, R. H., Kuhn, J.-T., Hornke, L. F., & Fox, J.-P. (2009). Evaluating cognitive theory: A joint modeling approach using responses and response times. Psychological Methods, 14, 54-75.
    • (2009) Psychological Methods , vol.14 , pp. 54-75
    • Klein Entink, R.H.1    Kuhn, J.-T.2    Hornke, L.F.3    Fox, J.-P.4
  • 21
    • 77956809111 scopus 로고    scopus 로고
    • Bayesian evaluation of inequality constrained hypotheses for contingency tables
    • Klugkist, I., Laudy, O., & Hoijtink, H. (2010). Bayesian evaluation of inequality constrained hypotheses for contingency tables. Psychological Methods, 15, 281-299.
    • (2010) Psychological Methods , vol.15 , pp. 281-299
    • Klugkist, I.1    Laudy, O.2    Hoijtink, H.3
  • 23
    • 37349080640 scopus 로고    scopus 로고
    • A Bayesian approach to diffusion models of decision-making and response time
    • B. Scholkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Lee, M. D., Fuss, I. G., & Navarro, D. J. (2006). A Bayesian approach to diffusion models of decision-making and response time. In B. Scholkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing 19 (pp. 809-815). Cambridge, MA: MIT Press.
    • (2006) Advances in Neural Information Processing , vol.19 , pp. 809-815
    • Lee, M.D.1    Fuss, I.G.2    Navarro, D.J.3
  • 24
    • 85139526175 scopus 로고    scopus 로고
    • A model-based approach to measuring expertise in ranking tasks
    • L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Austin, TX: Cognitive Science Society
    • Lee, M., Steyvers, M., de Young, M., & Miller, B. (2011). A model-based approach to measuring expertise in ranking tasks. In L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 1304-1309). Austin, TX: Cognitive Science Society.
    • (2011) Proceedings of the 33rd Annual Conference of the Cognitive Science Society , pp. 1304-1309
    • Lee, M.1    Steyvers, M.2    de Young, M.3    Miller, B.4
  • 26
    • 33744665890 scopus 로고    scopus 로고
    • Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation
    • Liu, J. S., & Sabatti, C. (2000). Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika, 87, 353-369.
    • (2000) Biometrika , vol.87 , pp. 353-369
    • Liu, J.S.1    Sabatti, C.2
  • 27
    • 0006407254 scopus 로고    scopus 로고
    • Win-BUGS-A Bayesian modelling framework: Concepts, structure and extensibility
    • Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Win-BUGS-A Bayesian modelling framework: Concepts, structure and extensibility. Statistics and Computing, 10, 325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 28
    • 66349137872 scopus 로고    scopus 로고
    • Modeling life-span growth curves of cognition using longitudinal data with multiple samples and changing scales of measurement
    • McArdle, J. J., Grimm, K. J., Hamagami, F., Bowles, R. P., & Meredith, W. (2009). Modeling life-span growth curves of cognition using longitudinal data with multiple samples and changing scales of measurement. Psychological Methods, 14, 126-149.
    • (2009) Psychological Methods , vol.14 , pp. 126-149
    • McArdle, J.J.1    Grimm, K.J.2    Hamagami, F.3    Bowles, R.P.4    Meredith, W.5
  • 29
    • 40749128078 scopus 로고    scopus 로고
    • A statistical model for discriminating between subliminal and near-liminal performance
    • Morey, R. D., Rouder, J. N., & Speckman, P. (2008). A statistical model for discriminating between subliminal and near-liminal performance. Journal of Mathematical Psychology, 52, 21-36.
    • (2008) Journal of Mathematical Psychology , vol.52 , pp. 21-36
    • Morey, R.D.1    Rouder, J.N.2    Speckman, P.3
  • 30
    • 77949269591 scopus 로고    scopus 로고
    • A truncated-probit item response model for estimating psychophysical thresholds
    • Morey, R. D., Rouder, J. N., & Speckman, P. (2009). A truncated-probit item response model for estimating psychophysical thresholds. Psychometrika, 74, 603-618.
    • (2009) Psychometrika , vol.74 , pp. 603-618
    • Morey, R.D.1    Rouder, J.N.2    Speckman, P.3
  • 31
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.1    Asparouhov, T.2
  • 32
    • 85057196821 scopus 로고    scopus 로고
    • MCMC using Hamiltonian dynamics
    • S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.), Boca Raton, FL: CRC Press
    • Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 113-162). Boca Raton, FL: CRC Press.
    • (2011) Handbook of Markov chain Monte Carlo , pp. 113-162
    • Neal, R.M.1
  • 33
    • 84895908680 scopus 로고    scopus 로고
    • A hierarchical Ornstein-Uhlenbeck model for continuous repeated measurement data
    • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2009). A hierarchical Ornstein-Uhlenbeck model for continuous repeated measurement data. Psychometrika, 74, 395-418.
    • (2009) Psychometrika , vol.74 , pp. 395-418
    • Oravecz, Z.1    Tuerlinckx, F.2    Vandekerckhove, J.3
  • 34
    • 0033261632 scopus 로고    scopus 로고
    • Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses
    • Patz, R. J., & Junker, B. W. (1999a). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342-366.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 342-366
    • Patz, R.J.1    Junker, B.W.2
  • 35
    • 0033411905 scopus 로고    scopus 로고
    • A straightforward approach to Markov chain Monte Carlo methods for item response models
    • Patz, R. J., & Junker, B. W. (1999b). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 146-178
    • Patz, R.J.1    Junker, B.W.2
  • 36
    • 3242806705 scopus 로고    scopus 로고
    • Was it a car or a cat I saw? An analysis of response times for word recognition
    • Peruggia, M., Van Zandt, T., & Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. Case Studies in Bayesian Statistics 6, 319-334.
    • (2002) Case Studies in Bayesian Statistics , vol.6 , pp. 319-334
    • Peruggia, M.1    Van Zandt, T.2    Chen, M.3
  • 37
    • 79551643710 scopus 로고    scopus 로고
    • Understanding memory impairment with memory models and hierarchical Bayesian analysis
    • Pooley, J. P., Lee, M. D., & Shankle, W. R. (2011). Understanding memory impairment with memory models and hierarchical Bayesian analysis. Journal of Mathematical Psychology, 55, 47-56.
    • (2011) Journal of Mathematical Psychology , vol.55 , pp. 47-56
    • Pooley, J.P.1    Lee, M.D.2    Shankle, W.R.3
  • 38
    • 38349117476 scopus 로고    scopus 로고
    • Allowing for correlations between correlations in random-effect meta-analysis of correlation matrices
    • Prevost, A. T., Mason, D., Griffin, S., Kinmonth, A.-L., Sutton, S., & Spiegelhalter, D. (2007). Allowing for correlations between correlations in random-effect meta-analysis of correlation matrices. Psychological Methods, 12, 434-450.
    • (2007) Psychological Methods , vol.12 , pp. 434-450
    • Prevost, A.T.1    Mason, D.2    Griffin, S.3    Kinmonth, A.-L.4    Sutton, S.5    Spiegelhalter, D.6
  • 39
    • 58149404021 scopus 로고
    • A theory of memory retrieval
    • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59-108.
    • (1978) Psychological Review , vol.85 , pp. 59-108
    • Ratcliff, R.1
  • 40
    • 33947674248 scopus 로고    scopus 로고
    • Application of the diffusion model to two-choice tasks for adults 75-90 years old
    • Ratcliff, R., Thapar, A., & McKoon, G. (2007). Application of the diffusion model to two-choice tasks for adults 75-90 years old. Psychology and Aging, 22, 56-66.
    • (2007) Psychology and Aging , vol.22 , pp. 56-66
    • Ratcliff, R.1    Thapar, A.2    McKoon, G.3
  • 42
    • 0000051645 scopus 로고    scopus 로고
    • Updating schemes, correlation structure, blocking and parameterisation for the Gibbs sampler, Journal of the Royal Statistical Society
    • Robert, G. O., & Sahu, S. (1997). Updating schemes, correlation structure, blocking and parameterisation for the Gibbs sampler. Journal of the Royal Statistical Society, Series B: Statistical methodology, 59, 291-317.
    • (1997) Series B: Statistical methodology , vol.59 , pp. 291-317
    • Robert, G.O.1    Sahu, S.2
  • 43
    • 31044444107 scopus 로고    scopus 로고
    • An introduction to Bayesian hierarchical models with an application in the theory of signal detection
    • Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573-604.
    • (2005) Psychonomic Bulletin & Review , vol.12 , pp. 573-604
    • Rouder, J.N.1    Lu, J.2
  • 45
    • 3042633762 scopus 로고    scopus 로고
    • A hierarchical Bayesian statistical framework for response time distributions
    • Rouder, J., Sun, D., Speckman, P., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 589-606.
    • (2003) Psychometrika , vol.68 , pp. 589-606
    • Rouder, J.1    Sun, D.2    Speckman, P.3    Lu, J.4    Zhou, D.5
  • 47
    • 84862609398 scopus 로고    scopus 로고
    • A tutorial on the Bayesian approach for analyzing structural equation models
    • Song, X.-Y., & Lee, S.-Y. (2012). A tutorial on the Bayesian approach for analyzing structural equation models. Journal of Mathematical Psychology, 56, 135-148.
    • (2012) Journal of Mathematical Psychology , vol.56 , pp. 135-148
    • Song, X.-Y.1    Lee, S.-Y.2
  • 48
    • 77954011615 scopus 로고    scopus 로고
    • The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model
    • Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model. Psychological Aging, 25, 377-390.
    • (2010) Psychological Aging , vol.25 , pp. 377-390
    • Starns, J.J.1    Ratcliff, R.2
  • 49
    • 0001277632 scopus 로고
    • Models for choice reaction time
    • Stone, M. (1960). Models for choice reaction time. Psychometrika, 25, 251-260.
    • (1960) Psychometrika , vol.25 , pp. 251-260
    • Stone, M.1
  • 50
    • 51749108047 scopus 로고    scopus 로고
    • Differential evolution research-Trends and open questions
    • U. K. Chakraborty (Ed.), New York, NY: Springer
    • Storn, R. (2008). Differential evolution research-Trends and open questions. In U. K. Chakraborty (Ed.), Advances in differential evolution (pp. 1-31). New York, NY: Springer.
    • (2008) Advances in differential evolution , pp. 1-31
    • Storn, R.1
  • 51
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., & Price, K. (1997). Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341-359.
    • (1997) Journal of Global Optimization , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 53
    • 33745603720 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces
    • ter Braak, C. J. F. (2006). A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239-249.
    • (2006) Statistics and Computing , vol.16 , pp. 239-249
    • ter Braak, C.J.F.1
  • 54
    • 57849128804 scopus 로고    scopus 로고
    • Differential evolution Markov chain with snooker updater and fewer chains
    • ter Braak, C. J., & Vrugt, J. A. (2008). Differential evolution Markov chain with snooker updater and fewer chains. Statistics and Computing, 18, 435-446.
    • (2008) Statistics and Computing , vol.18 , pp. 435-446
    • ter Braak, C.J.1    Vrugt, J.A.2
  • 56
    • 84866883276 scopus 로고    scopus 로고
    • Approximate Bayesian computation with differential evolution
    • Turner, B. M., & Sederberg, P. B. (2012). Approximate Bayesian computation with differential evolution. Journal of Mathematical Psychology, 56, 375-385.
    • (2012) Journal of Mathematical Psychology , vol.56 , pp. 375-385
    • Turner, B.M.1    Sederberg, P.B.2
  • 57
    • 85047685362 scopus 로고    scopus 로고
    • On the time course of perceptual choice: The leaky competing accumulator model
    • Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: The leaky competing accumulator model. Psychological Review, 108, 550-592.
    • (2001) Psychological Review , vol.108 , pp. 550-592
    • Usher, M.1    McClelland, J.L.2
  • 58
    • 67650264013 scopus 로고    scopus 로고
    • A Bayesian approach to diffusion process models of decision-making
    • V. M. Sloutsky, B. C. Love, & K. McRae (Eds.), Austin, TX: Cognitive Science Society
    • Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2008). A Bayesian approach to diffusion process models of decision-making. In V. M. Sloutsky, B. C. Love, & K. McRae (Eds.), Proceedings of the 30rd Annual Conference of the Cognitive Science Society (pp. 1429-1434). Austin, TX: Cognitive Science Society.
    • (2008) Proceedings of the 30rd Annual Conference of the Cognitive Science Society , pp. 1429-1434
    • Vandekerckhove, J.1    Tuerlinckx, F.2    Lee, M.D.3
  • 59
    • 79952586139 scopus 로고    scopus 로고
    • Hierarchical diffusion models for two-choice response time
    • Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response time. Psychological Methods, 16, 44-62.
    • (2011) Psychological Methods , vol.16 , pp. 44-62
    • Vandekerckhove, J.1    Tuerlinckx, F.2    Lee, M.D.3
  • 60
    • 77649185314 scopus 로고    scopus 로고
    • A crossed random effects diffusion model for speeded semantic categorization data
    • Vandekerckhove, J., Verheyen, S., & Tuerlinckx, F. (2010). A crossed random effects diffusion model for speeded semantic categorization data. Acta Psychologica, 133, 269-282.
    • (2010) Acta Psychologica , vol.133 , pp. 269-282
    • Vandekerckhove, J.1    Verheyen, S.2    Tuerlinckx, F.3
  • 61
    • 74949110525 scopus 로고    scopus 로고
    • BayesGCM: Software for Bayesian inference with the generalized context model
    • Vanpaemel, W. (2009). BayesGCM: Software for Bayesian inference with the generalized context model. Behavior Research Methods, 41, 1111-1120.
    • (2009) Behavior Research Methods , vol.41 , pp. 1111-1120
    • Vanpaemel, W.1
  • 63
    • 34247192112 scopus 로고    scopus 로고
    • Item factor analysis: Current approaches and future directions
    • Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12, 58-79.
    • (2007) Psychological Methods , vol.12 , pp. 58-79
    • Wirth, R.J.1    Edwards, M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.