메뉴 건너뛰기




Volumn 19, Issue 5, 2012, Pages 792-799

Named entity recognition of follow-up and time information in 20 000 radiology reports

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; EFFECT SIZE; FOLLOW UP; HUMAN; MACHINE LEARNING; MEDICAL INFORMATION; MEDICAL RECORD; RADIOLOGY; ARTIFICIAL INTELLIGENCE; CLASSIFICATION; DATA MINING; ELECTRONIC MEDICAL RECORD; FEASIBILITY STUDY; HOSPITAL INFORMATION SYSTEM; METHODOLOGY; NATURAL LANGUAGE PROCESSING;

EID: 84872259831     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2012-000812     Document Type: Article
Times cited : (31)

References (41)
  • 1
    • 0030483615 scopus 로고    scopus 로고
    • Natural language processing in medicine: an overview
    • Spyns P. Natural language processing in medicine: an overview. Methods Inf Med 1996;35:285-301.
    • (1996) Methods Inf Med , vol.35 , pp. 285-301
    • Spyns, P.1
  • 2
    • 4544280638 scopus 로고    scopus 로고
    • Automated encoding of clinical documents based on natural language processing
    • Friedman C, Shagina L, Lussier Y, et al. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 2004;11:392-402.
    • (2004) J Am Med Inform Assoc , vol.11 , pp. 392-402
    • Friedman, C.1    Shagina, L.2    Lussier, Y.3
  • 3
    • 39049190745 scopus 로고    scopus 로고
    • Comparing natural language processing tools to extract medical problems from narrative text
    • Meystre SM, Haug PJ. Comparing natural language processing tools to extract medical problems from narrative text. AMIA Annu Symp Proc 2005:525-9.
    • (2005) AMIA Annu Symp Proc , pp. 525-9
    • Meystre, S.M.1    Haug, P.J.2
  • 4
    • 33750722813 scopus 로고    scopus 로고
    • Natural language processing to extract medical problems from electronic clinical documents: performance evaluation
    • Meystre SM, Haug PJ. Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. J Biomed Inform 2006;39:589-99.
    • (2006) J Biomed Inform , vol.39 , pp. 589-99
    • Meystre, S.M.1    Haug, P.J.2
  • 5
    • 0028402861 scopus 로고
    • Natural language processing and the representation of clinical data
    • Sager N Lyman M, Bucknall C, et al. Natural language processing and the representation of clinical data. J Am Med Inform Assoc 1994;2:142-60.
    • (1994) J Am Med Inform Assoc , vol.2 , pp. 142-60
    • Sager, N.1    Lyman, M.2    Bucknall, C.3
  • 6
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994;1:161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-74
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 7
    • 0036082141 scopus 로고    scopus 로고
    • Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports
    • Hripcsak G, Austin JH, Alderson PO, et al. Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 2002;224:157-63.
    • (2002) Radiology , vol.224 , pp. 157-63
    • Hripcsak, G.1    Austin, J.H.2    Alderson, P.O.3
  • 8
    • 18044384608 scopus 로고    scopus 로고
    • Improved identification of noun phrases in clinical radiology reports using a high-performance statistical natural language parser augmented with the UMLS specialist lexicon
    • Huang Y, Lowe HJ, Klein D, et al. Improved identification of noun phrases in clinical radiology reports using a high-performance statistical natural language parser augmented with the UMLS specialist lexicon. J Am Med Inform Assoc 2005;12:275-85.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 275-85
    • Huang, Y.1    Lowe, H.J.2    Klein, D.3
  • 9
    • 34547125498 scopus 로고    scopus 로고
    • A study of lexical behavior of sentences in chest radiology reports
    • Bashyam V, Taira RK. A study of lexical behavior of sentences in chest radiology reports. AMIA Annu Symp Proc 2005:891.
    • (2005) AMIA Annu Symp Proc , pp. 891
    • Bashyam, V.1    Taira, R.K.2
  • 10
    • 34748821126 scopus 로고    scopus 로고
    • A natural language processing system to extract and code concepts relating to congestive heart failure from chest radiology reports
    • Friedlin J, McDonald CJ. A natural language processing system to extract and code concepts relating to congestive heart failure from chest radiology reports. AMIA Annu Symp Proc 2006:269-73.
    • (2006) AMIA Annu Symp Proc , pp. 269-73
    • Friedlin, J.1    Mcdonald, C.J.2
  • 11
    • 67649352146 scopus 로고    scopus 로고
    • NLP-based Identification of Pneumonia Cases from Free-text Radiological Reports
    • Elkin PL, Froehling D, Wahner-Roedler D, et al. NLP-based Identification of Pneumonia Cases from Free-text Radiological Reports. AMIA Annu Symp Proc 2005:172-6.
    • (2005) AMIA Annu Symp Proc , pp. 172-6
    • Elkin, P.L.1    Froehling, D.2    Wahner-Roedler, D.3
  • 12
    • 77958179752 scopus 로고    scopus 로고
    • Extracting timing and status descriptors for colonoscopy testing from electronic medical records
    • Denny JC, Peterson JF, Choma NN, et al. Extracting timing and status descriptors for colonoscopy testing from electronic medical records. J Am Med Inform Assoc 2010;17:383-8.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 383-8
    • Denny, J.C.1    Peterson, J.F.2    Choma, N.N.3
  • 13
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
    • Williamstown, MA, USA: International Machine Learning Society, 2001
    • Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings of the 18th International Conference on Machine Learning (ICML 2001). Williamstown, MA, USA: International Machine Learning Society, 2001:282-9.
    • (2001) Proceedings of the 18th International Conference on Machine Learning (ICML) , pp. 282-9
    • Lafferty, J.1    Mccallum, A.2    Pereira, F.3
  • 14
    • 72449184564 scopus 로고    scopus 로고
    • Extracting structured information from user queries with semi-supervised conditional random fields
    • Boston, MA, USA ACM Special Interest Group on Information Retrieval
    • Li X, Wang YY, Acero A. Extracting structured information from user queries with semi-supervised conditional random fields. Proceedings of the 32nd ACM Special Interest Group on Information Retrieval (SIGIR 2009). Boston, MA, USA ACM Special Interest Group on Information Retrieval, 2009:572-9.
    • (2009) Proceedings of the 32nd ACM Special Interest Group on Information Retrieval (SIGIR 2009). , pp. 572-579
    • Li, X.1    Wang, Y.Y.2    Acero, A.3
  • 16
    • 78049509924 scopus 로고    scopus 로고
    • A new incremental updating algorithm for mining sequential patterns
    • Ren JD, Zhou XL. A new incremental updating algorithm for mining sequential patterns. J Comput Sci 2006;2:318-21.
    • (2006) J Comput Sci , vol.2 , pp. 318-321
    • Ren, J.D.1    Zhou, X.L.2
  • 17
    • 36348945193 scopus 로고    scopus 로고
    • Mining sequential patterns and tree patterns to detect erroneous sentences
    • Vancouver, British Columbia, Canada: Association for the Advancement of Artificial Intelligence
    • Sun G, Cong G, Liu X, et al. Mining sequential patterns and tree patterns to detect erroneous sentences. Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007). Vancouver, British Columbia, Canada: Association for the Advancement of Artificial Intelligence, 2007:925-30.
    • (2007) Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007) , pp. 925-930
    • Sun, G.1    Cong, G.2    Liu, X.3
  • 19
    • 84867640802 scopus 로고    scopus 로고
    • Conditional random fields and support vector machines for disorder named entity recognition in clinical texts
    • Columbus, OH, USA: Association for Computational Linguistics, 2008
    • Li D, Kipper-Schuler K, Savova G, et al. Conditional random fields and support vector machines for disorder named entity recognition in clinical texts. Proceedings of Natural Language Processing in Biomedicine (BioNLP 2008). Columbus, OH, USA: Association for Computational Linguistics, 2008:94-5.
    • (2008) Proceedings of Natural Language Processing in Biomedicine (BioNLP , pp. 94-95
    • Li, D.1    Kipper-Schuler, K.2    Savova, G.3
  • 20
    • 17244376942 scopus 로고    scopus 로고
    • Biomedical named entity recognition using conditional random fields and rich feature sets
    • Barcelona, Spain: Association for Natural Language Processing in Biomedical Applications, 2004
    • Settles B. Biomedical named entity recognition using conditional random fields and rich feature sets. Proceedings of Natural Language Processing in Biomedical Applications (NLPBA 2004). Barcelona, Spain: Association for Natural Language Processing in Biomedical Applications, 2004:104-7.
    • (2004) Proceedings of Natural Language Processing in Biomedical Applications (NLPBA , pp. 104-107
    • Settles, B.1
  • 21
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17:514-18.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 22
    • 80053292637 scopus 로고    scopus 로고
    • 2010 I2B2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner O, South BR, Shen SY, et al. 2010 I2B2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011;18: 552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.Y.3
  • 23
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 I2B2 medication extraction challenge
    • Partrick J, Li M. High accuracy information extraction of medication information from clinical notes: 2009 I2B2 medication extraction challenge. J Am Med Inform Assoc 2010;17:524-7.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 524-527
    • Partrick, J.1    Li, M.2
  • 25
    • 80053241946 scopus 로고    scopus 로고
    • Machine-learned solutions for three stages of clinical information extraction: the state of the art at I2B2 2010
    • De Bruiji B, Cherry C, Kiritchenko S, et al. Machine-learned solutions for three stages of clinical information extraction: the state of the art at I2B2 2010. J Am Med Inform Assoc 2011;18:557-62.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 557-562
    • De Bruiji, B.1    Cherry, C.2    Kiritchenko, S.3
  • 27
    • 33644780888 scopus 로고    scopus 로고
    • A process-mining framework for the detection of healthcare fraud and abuse
    • Yang WS, Hwang SY. A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst Appl 2006;31:56-68.
    • (2006) Expert Syst Appl , vol.31 , pp. 56-68
    • Yang, W.S.1    Hwang, S.Y.2
  • 28
    • 73949094379 scopus 로고    scopus 로고
    • Detecting workflow changes after a CPOE implementation: a sequential pattern analysis approach
    • Hanauer DA Zheng K. Detecting workflow changes after a CPOE implementation: a sequential pattern analysis approach. AMIA Annu Symp Proc 2008:963.
    • (2008) AMIA Annu Symp Proc , pp. 963
    • Hanauer, D.A.1    Zheng, K.2
  • 29
    • 60549108172 scopus 로고    scopus 로고
    • An interface-driven analysis of user interactions with an electronic health records system
    • Zheng K, Padman R, Johnson MP, et al. An interface-driven analysis of user interactions with an electronic health records system. J Am Med Inform Assoc 2009;16:228-37.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 228-237
    • Zheng, K.1    Padman, R.2    Johnson, M.P.3
  • 32
    • 39049195027 scopus 로고    scopus 로고
    • System architecture for temporal information extraction, representation and reasoning in clinical narrative reports
    • Zhou L, Friedman C, Parsons S, et al. System architecture for temporal information extraction, representation and reasoning in clinical narrative reports. AMIA Annu Symp Proc 2005:869.
    • (2005) AMIA Annu Symp Proc , pp. 869
    • Zhou, L.1    Friedman, C.2    Parsons, S.3
  • 33
    • 60549091164 scopus 로고    scopus 로고
    • Using empiric semantic correlation to interpret temporal assertions in clinical texts
    • Hripcsak G, Elhadad N, Chen YH, et al. Using empiric semantic correlation to interpret temporal assertions in clinical texts. J Am Med Inform Assoc 2009;16:220-7.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 220-227
    • Hripcsak, G.1    Elhadad, N.2    Chen, Y.H.3
  • 36
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system
    • Zeng QT, Goryachev S, Weiss S, et al. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak 2006;6:30-8.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 30-38
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3
  • 38
    • 84873844186 scopus 로고    scopus 로고
    • SharpNLP tools.
    • SharpNLP tools. http://sharpnlp.codeplex.com/
  • 39
    • 79959665991 scopus 로고    scopus 로고
    • Anaphoric relations in the clinical narrative: corpus creation
    • Savova GK, Chapman WW, Zheng J, et al. Anaphoric relations in the clinical narrative: corpus creation. J Am Med Inform Assoc 2011;18:459-65.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 459-465
    • Savova, G.K.1    Chapman, W.W.2    Zheng, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.