메뉴 건너뛰기




Volumn 5783 LNAI, Issue , 2009, Pages 434-445

A framework for designing a fuzzy rule-based classifier

Author keywords

Classifier; Fuzzy rule; Genetic algorithm; Knowledge extraction; Variable selection

Indexed keywords

CLASSIFICATION ACCURACY; FUZZY RULE-BASED CLASSIFIER; GENETIC SEARCH; INPUT VARIABLES; KNOWLEDGE EXTRACTION; REAL-WORLD PROBLEM; TREE ALGORITHMS; TWO STAGE; VARIABLE SELECTION;

EID: 71549144115     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04428-1_38     Document Type: Conference Paper
Times cited : (4)

References (29)
  • 1
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems Man Cybernetics 23, 665-685 (1993)
    • (1993) IEEE Trans. Systems Man Cybernetics , vol.23 , pp. 665-685
    • Jang, J.R.1
  • 2
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Networks 3(5), 698-713 (1992)
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 5
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1461-1480 (1990)
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1461-1480
    • Kohonen, T.1
  • 6
    • 0035481747 scopus 로고    scopus 로고
    • Chen, M.Y., Linkens, D.A.: A systematic neuro-fuzzy modeling framework with application to material property prediction. IEEE Trans. Systems Man, Cybernetics, Part B 31(5), 781-790 (2001)
    • Chen, M.Y., Linkens, D.A.: A systematic neuro-fuzzy modeling framework with application to material property prediction. IEEE Trans. Systems Man, Cybernetics, Part B 31(5), 781-790 (2001)
  • 7
    • 34547681970 scopus 로고    scopus 로고
    • Fuzzy classifier design using genetic algorithms
    • Zhou, E., Khotanzad, A.: Fuzzy classifier design using genetic algorithms. Pattern Recognition 40(12), 3401-3414 (2007)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3401-3414
    • Zhou, E.1    Khotanzad, A.2
  • 8
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised on-line, knowledge-based learning
    • Kasabov, N.: Evolving fuzzy neural networks for supervised/unsupervised on-line, knowledge-based learning. IEEE Trans. Systems, Man and Cybernetics 31(6), 902- 918 (2001)
    • (2001) IEEE Trans. Systems, Man and Cybernetics , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 9
    • 54449087782 scopus 로고    scopus 로고
    • Clustering and co-evolution to construct network ensembles: An experimental study
    • Minku, F.L., Ludermir, T.B.: Clustering and co-evolution to construct network ensembles: An experimental study. Neural Networks 21, 1363-1379 (2008)
    • (2008) Neural Networks , vol.21 , pp. 1363-1379
    • Minku, F.L.1    Ludermir, T.B.2
  • 10
    • 0036435523 scopus 로고    scopus 로고
    • Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization
    • Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning 32(1), 1-21 (2003)
    • (2003) International Journal of Approximate Reasoning , vol.32 , Issue.1 , pp. 1-21
    • Abonyi, J.1    Roubos, J.A.2    Szeifert, F.3
  • 11
    • 33846816451 scopus 로고    scopus 로고
    • Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods
    • Pulkkinen, P., Koivisto, H.: Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods. Applied Sof Computing 7, 520-533 (2007)
    • (2007) Applied Sof Computing , vol.7 , pp. 520-533
    • Pulkkinen, P.1    Koivisto, H.2
  • 13
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Verikas, A., Bacauskiene, M.: Feature selection with neural networks. Pattern Recognition Letters 23(11), 1323-1335 (2002)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.11 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 14
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • Roubos, J.A., Setnes, M., Abonyi, J.: Learning fuzzy classification rules from labeled data. Information Sciences 150, 77-93 (2003)
    • (2003) Information Sciences , vol.150 , pp. 77-93
    • Roubos, J.A.1    Setnes, M.2    Abonyi, J.3
  • 15
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 16(2), 149-169 (1999)
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 16
    • 0030214780 scopus 로고    scopus 로고
    • Adaptive fuzzy rule-based classification systems
    • Nozaki, K., Ishibuchi, H., Tanaka, H.: Adaptive fuzzy rule-based classification systems. IEEE Trans. Fuzzy Systems 4(3), 238-250 (1996)
    • (1996) IEEE Trans. Fuzzy Systems , vol.4 , Issue.3 , pp. 238-250
    • Nozaki, K.1    Ishibuchi, H.2    Tanaka, H.3
  • 17
    • 33750512162 scopus 로고    scopus 로고
    • Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening
    • Ozyer, T., Alhajj, R., Barker, K.: Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening. Journal of Network and Computer Applications 30(1), 99-113 (2007)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 99-113
    • Ozyer, T.1    Alhajj, R.2    Barker, K.3
  • 18
    • 56949090674 scopus 로고    scopus 로고
    • Automatic generation of fuzzy inference systems via unsupervised learning
    • Er, M.J., Zhou, Y.: Automatic generation of fuzzy inference systems via unsupervised learning. Neural Networks 21(10), 1556-1566 (2008)
    • (2008) Neural Networks , vol.21 , Issue.10 , pp. 1556-1566
    • Er, M.J.1    Zhou, Y.2
  • 19
    • 33845212542 scopus 로고    scopus 로고
    • A weighted fuzzy classifier and its application to image processing tasks
    • Nakashima, T., Schaefer, G., Yokota, Y., Ishibuchi, H.: A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets and Systems 158, 284-294 (2007)
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 284-294
    • Nakashima, T.1    Schaefer, G.2    Yokota, Y.3    Ishibuchi, H.4
  • 20
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning 44(1), 4-31 (2007)
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 21
    • 30344446393 scopus 로고    scopus 로고
    • Combining som and fuzzy rule base for flow time prediction in semiconductor manufacturing factory
    • Chang, P.C., Liao, T.W.: Combining som and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Applied Soft Computing 6, 198-206 (2006)
    • (2006) Applied Soft Computing , vol.6 , pp. 198-206
    • Chang, P.C.1    Liao, T.W.2
  • 22
    • 38349177924 scopus 로고    scopus 로고
    • Data mining with a simulated annealing based fuzzy classification system
    • Mohamadi, H., Habibi, J., Abadeh, M.S., Saadi, H.: Data mining with a simulated annealing based fuzzy classification system. Pattern Recognition 41(5), 1824-1833 (2008)
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1824-1833
    • Mohamadi, H.1    Habibi, J.2    Abadeh, M.S.3    Saadi, H.4
  • 23
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • Lowe, D.G.: Similarity metric learning for a variable-kernel classifier. Neural Computation 7, 72-85 (1995)
    • (1995) Neural Computation , vol.7 , pp. 72-85
    • Lowe, D.G.1
  • 24
    • 0016127071 scopus 로고
    • Finding prototypes for nearest neighbour classifiers
    • Chang, C.L.: Finding prototypes for nearest neighbour classifiers. IEEE Trans. Computers 23, 1179-1184 (1974)
    • (1974) IEEE Trans. Computers , vol.23 , pp. 1179-1184
    • Chang, C.L.1
  • 25
    • 0038792231 scopus 로고    scopus 로고
    • Learning an adaptive dissimilarity measure for nearest neighbour classification
    • Verikas, A., Bacauskiene, M., Malmqvist, K.: Learning an adaptive dissimilarity measure for nearest neighbour classification. Neural Computing & Applications 11(3-4), 203-209 (2003)
    • (2003) Neural Computing & Applications , vol.11 , Issue.3-4 , pp. 203-209
    • Verikas, A.1    Bacauskiene, M.2    Malmqvist, K.3
  • 27
    • 10844255636 scopus 로고    scopus 로고
    • The evolving tree-A novel self-organizing network for data analysis
    • Pakkanen, J., Iivarinen, J., Oja, E.: The evolving tree-A novel self-organizing network for data analysis. Neural Processing Letters 20, 199-211 (2004)
    • (2004) Neural Processing Letters , vol.20 , pp. 199-211
    • Pakkanen, J.1    Iivarinen, J.2    Oja, E.3
  • 29
    • 52449084807 scopus 로고    scopus 로고
    • An efficient technique to detect visual defects in particleboards
    • Guzaitis, J., Verikas, A.: An efficient technique to detect visual defects in particleboards. Informatica 19(3), 363-376 (2008)
    • (2008) Informatica , vol.19 , Issue.3 , pp. 363-376
    • Guzaitis, J.1    Verikas, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.