메뉴 건너뛰기




Volumn , Issue , 2012, Pages 535-545

Modelling sequential text with an adaptive topic model

Author keywords

[No Author keywords available]

Indexed keywords

GIBBS SAMPLERS; LATENT SEMANTIC ANALYSIS; SEMANTIC TECHNIQUES; SEQUENTIAL STRUCTURE; TEXT ANALYSIS; TOPIC ADAPTATION; TOPIC MODEL; TOPIC MODELING;

EID: 84883323597     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (25)
  • 1
  • 2
    • 85029434098 scopus 로고    scopus 로고
    • Catching the drift: Probabilistic content models, with applications to generation and summarization
    • Association for Computational Linguistics
    • R. Barzilay and L. Lee. 2004. Catching the drift: Probabilistic content models, with applications to generation and summarization. In HLT-NAACL 2004: Main Proceedings, pages 113-120. Association for Computational Linguistics.
    • (2004) HLT-NAACL 2004: Main Proceedings , pp. 113-120
    • Barzilay, R.1    Lee, L.2
  • 10
    • 77955656991 scopus 로고    scopus 로고
    • A segmented topic model based on the two-parameter poisson-dirichlet process
    • L. Du, W. Buntine, and H. Jin. 2010. A segmented topic model based on the two-parameter Poisson-Dirichlet process. Machine Learning, 81:5-19.
    • (2010) Machine Learning , vol.81 , pp. 5-19
    • Du, L.1    Buntine, W.2    Jin, H.3
  • 16
    • 80052248446 scopus 로고    scopus 로고
    • PCFGs, topic models, adaptor grammars and learning topical collocations and the structure of proper names
    • Uppsala, Sweden, July. Association for Computational Linguistics
    • M. Johnson. 2010. PCFGs, topic models, adaptor grammars and learning topical collocations and the structure of proper names. In Proc. of 48th Annual Meeting of the ACL, pages 1148-1157, Uppsala, Sweden, July. Association for Computational Linguistics.
    • (2010) Proc. of 48th Annual Meeting of the ACL , pp. 1148-1157
    • Johnson, M.1
  • 19
    • 85162543244 scopus 로고    scopus 로고
    • Improving topic coherence with regularized topic models
    • J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger, editors
    • D. Newman, E.V. Bonilla, and W. Buntine. 2011. Improving topic coherence with regularized topic models. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 496-504.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 496-504
    • Newman, D.1    Bonilla, E.V.2    Buntine, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.