메뉴 건너뛰기




Volumn , Issue , 2008, Pages 713-718

Latent dirichlet allocation and singular value decomposition based multi-document summarization

Author keywords

[No Author keywords available]

Indexed keywords

BREAK DOWN; COMMON INFORMATION; LATENT DIRICHLET ALLOCATION; MIXTURE MODEL; MULTI-DOCUMENT SUMMARIZATION; ORTHOGONAL REPRESENTATION; ORTHOGONAL VECTORS;

EID: 67249098543     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.55     Document Type: Conference Paper
Times cited : (40)

References (16)
  • 2
    • 0029546874 scopus 로고
    • Using Linear Algebra for Intelligent Information Retrieval
    • D. S. T. Berry Michael W and O. G. W. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4):573-595, 1995.
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 573-595
    • Michael, W.D.S.T.B.1
  • 5
    • 10644273096 scopus 로고    scopus 로고
    • Generating single and multi-document summaries with gistexter
    • S. M. Harabagiu and F. Lacatusu. Generating single and multi-document summaries with gistexter. In Proceedings of the DUC 2002, pages 30-38, 2002.
    • (2002) Proceedings of the DUC 2002 , pp. 30-38
    • Harabagiu, S.M.1    Lacatusu, F.2
  • 10
    • 85149140250 scopus 로고    scopus 로고
    • Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics
    • C.-Y. Lin and F. J. Och. Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, 2004. [11] S. R. M. Saravanan and B. Ravindran. A probabilistic approach to multi-document summarization for generating a tiled summary. Proceedings of the Sixth International Conference on Computational Intelligence and Multimedia Applications,6:167 - 172, 2005.
    • (2004) Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics
    • Lin, C.-Y.1    Och, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.