메뉴 건너뛰기




Volumn 35, Issue 4, 2013, Pages 514-527

Bayesian analysis for partially observed network data, missing ties, attributes and actors

Author keywords

ERGM (p star); Exchange algorithm; Imputation; Markov graph; Missing data; Network boundary; Non response; Snowball sampling

Indexed keywords


EID: 84883307809     PISSN: 03788733     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.socnet.2013.07.003     Document Type: Article
Times cited : (87)

References (89)
  • 1
    • 0001885521 scopus 로고
    • Regression analysis for categorical variables with outcome subject to nonignorable nonresponse
    • Baker S.G., Laird N.M. Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. Journal of the American Statistical Association 1988, 83:62-69.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 62-69
    • Baker, S.G.1    Laird, N.M.2
  • 2
    • 0001032085 scopus 로고
    • Information accuracy in social network data IV: a comparison of clique-level structure in behavioral and cognitive network data
    • Bernard H., Killworth P., Sailer L. Information accuracy in social network data IV: a comparison of clique-level structure in behavioral and cognitive network data. Social Networks 1980, 2:191-218.
    • (1980) Social Networks , vol.2 , pp. 191-218
    • Bernard, H.1    Killworth, P.2    Sailer, L.3
  • 4
    • 0037403970 scopus 로고    scopus 로고
    • Network inference, error, and informant (in)accuracy: a Bayesian approach
    • Butts C.T. Network inference, error, and informant (in)accuracy: a Bayesian approach. Social Networks 2003, 25:103-140.
    • (2003) Social Networks , vol.25 , pp. 103-140
    • Butts, C.T.1
  • 7
    • 84875582101 scopus 로고    scopus 로고
    • Bayesian model selection for exponential random graph models
    • Caimo A., Friel N. Bayesian model selection for exponential random graph models. Social Networks 2013, 35:11-24.
    • (2013) Social Networks , vol.35 , pp. 11-24
    • Caimo, A.1    Friel, N.2
  • 8
    • 79451473207 scopus 로고    scopus 로고
    • Bayesian inference for exponential random graph models
    • Caimo A., Friel N. Bayesian inference for exponential random graph models. Social Networks 2011, 33:41-55.
    • (2011) Social Networks , vol.33 , pp. 41-55
    • Caimo, A.1    Friel, N.2
  • 9
    • 71949112699 scopus 로고    scopus 로고
    • Co-offending and the development of the delinquent career
    • Carrington P.J. Co-offending and the development of the delinquent career. Criminology 2009, 47:1295-1329.
    • (2009) Criminology , vol.47 , pp. 1295-1329
    • Carrington, P.J.1
  • 10
    • 71949104005 scopus 로고    scopus 로고
    • The development of police-reported delinquency among Canadian youth born in 1987 and 1990
    • Canadian Centre for Justice Statistics, Statistics Canada, Ottawa
    • Carrington P.J. The development of police-reported delinquency among Canadian youth born in 1987 and 1990. Crime and Justice Research Paper Series 2007, Canadian Centre for Justice Statistics, Statistics Canada, Ottawa.
    • (2007) Crime and Justice Research Paper Series
    • Carrington, P.J.1
  • 11
  • 12
    • 43049151837 scopus 로고    scopus 로고
    • Hierarchical structure and the prediction of missing links in networks
    • Clauset A., Moore C., Newman M.E.J. Hierarchical structure and the prediction of missing links in networks. Nature 2008, 453:98-101.
    • (2008) Nature , vol.453 , pp. 98-101
    • Clauset, A.1    Moore, C.2    Newman, M.E.J.3
  • 16
    • 84863438247 scopus 로고    scopus 로고
    • Survey sampling in networks
    • Sage Publications, London, J. Scott, P. Carrington (Eds.)
    • Frank O. Survey sampling in networks. Handbook of Social Network Analysis 2011, 389-403. Sage Publications, London. J. Scott, P. Carrington (Eds.).
    • (2011) Handbook of Social Network Analysis , pp. 389-403
    • Frank, O.1
  • 17
    • 0001825008 scopus 로고
    • Estimating the size of hidden populations using snowball sampling
    • Frank O., Snijders T.A.B. Estimating the size of hidden populations using snowball sampling. Journal of Official Statistics 1994, 10:53-67.
    • (1994) Journal of Official Statistics , vol.10 , pp. 53-67
    • Frank, O.1    Snijders, T.A.B.2
  • 18
    • 33845796571 scopus 로고    scopus 로고
    • Estimation of offending and co-offending using available data with model support
    • Frank O., Carrington P.J. Estimation of offending and co-offending using available data with model support. Journal of Mathematical Sociology 2007, 31:1-46.
    • (2007) Journal of Mathematical Sociology , vol.31 , pp. 1-46
    • Frank, O.1    Carrington, P.J.2
  • 20
    • 69249207344 scopus 로고    scopus 로고
    • Model-based assessment of the impact of missing data on inference for networks
    • CSSS Working Paper 66, University of Washington
    • Gile, K., Handcock, M. S. (2006). Model-based assessment of the impact of missing data on inference for networks. CSSS Working Paper 66, University of Washington. http://www.csss.washington.edu/Papers/wp66.pdf.
    • (2006)
    • Gile, K.1    Handcock, M.S.2
  • 21
    • 77949340082 scopus 로고    scopus 로고
    • Respondent-driven sampling: an assessment of current methodology
    • Gile K.J., Handcock M.S. Respondent-driven sampling: an assessment of current methodology. Sociological Methodology 2010, 40:285-327.
    • (2010) Sociological Methodology , vol.40 , pp. 285-327
    • Gile, K.J.1    Handcock, M.S.2
  • 22
    • 2442486856 scopus 로고    scopus 로고
    • Assessing degeneracy in statistical models of social networks
    • CSSS Working Paper no. 39, University of Washington
    • Handcock, M.S. (2003). Assessing degeneracy in statistical models of social networks. CSSS Working Paper no. 39, University of Washington. http://www.csss.washington.edu/Papers/wp39.pdf.
    • (2003)
    • Handcock, M.S.1
  • 24
    • 77950918398 scopus 로고    scopus 로고
    • Modeling social networks with sampled or missing data
    • CSSS Working Paper 75, University of Washington
    • Handcock, M.S., Gile, K. (2007). Modeling social networks with sampled or missing data. CSSS Working Paper 75, University of Washington. http://www.csss.washington.edu/Papers/wp75.pdf.
    • (2007)
    • Handcock, M.S.1    Gile, K.2
  • 25
    • 54049091266 scopus 로고    scopus 로고
    • Statnet: software tools for the statistical modeling of network data
    • Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Morris, M., 2003. statnet: software tools for the statistical modeling of network data. http://statnetproject.org.
    • (2003)
    • Handcock, M.S.1    Hunter, D.R.2    Butts, C.T.3    Goodreau, S.M.4    Morris, M.5
  • 26
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings W.K. Monte Carlo sampling methods using Markov chains and their application. Biometrika 1970, 57:97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 27
    • 80855144204 scopus 로고    scopus 로고
    • Comment: snowball versus respondent-driven sampling
    • Heckathorn D.D. Comment: snowball versus respondent-driven sampling. Sociological Methodology 2011, 41:355-366.
    • (2011) Sociological Methodology , vol.41 , pp. 355-366
    • Heckathorn, D.D.1
  • 28
    • 77952878598 scopus 로고    scopus 로고
    • Multiplicative latent factor models for description and prediction of social networks
    • Hoff P.D. Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical Organization Theory 2009, 15:261-272.
    • (2009) Computational and Mathematical Organization Theory , vol.15 , pp. 261-272
    • Hoff, P.D.1
  • 30
    • 0032937149 scopus 로고    scopus 로고
    • Maximum likelihood analysis of generalized linear models with missing covariates
    • Horton N.J., Laird N.M. Maximum likelihood analysis of generalized linear models with missing covariates. Statistical Methods in Medical Research 1998, 8:37-50.
    • (1998) Statistical Methods in Medical Research , vol.8 , pp. 37-50
    • Horton, N.J.1    Laird, N.M.2
  • 31
    • 14944383985 scopus 로고    scopus 로고
    • Bayesian analysis for generalized linear models with nonignorably missing covariates
    • Huang L., Chen M-H., Ibrahim J.G. Bayesian analysis for generalized linear models with nonignorably missing covariates. Biometrics 2005, 61:767-780.
    • (2005) Biometrics , vol.61 , pp. 767-780
    • Huang, L.1    Chen, M.-H.2    Ibrahim, J.G.3
  • 32
    • 84968898131 scopus 로고    scopus 로고
    • Imputation of missing network data: Some simple procedures
    • Huisman M. Imputation of missing network data: Some simple procedures. Journal of Social Structure 2009, 10.
    • (2009) Journal of Social Structure , pp. 10
    • Huisman, M.1
  • 33
    • 34147139437 scopus 로고    scopus 로고
    • Curved exponential family models for social networks
    • Hunter D.R. Curved exponential family models for social networks. Social Networks 2007, 29:216-230.
    • (2007) Social Networks , vol.29 , pp. 216-230
    • Hunter, D.R.1
  • 36
    • 0029795665 scopus 로고    scopus 로고
    • Estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable
    • Ibrahim J.G., Lipsitz S.R. Estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. Biometrics 1996, 52:1071-1078.
    • (1996) Biometrics , vol.52 , pp. 1071-1078
    • Ibrahim, J.G.1    Lipsitz, S.R.2
  • 37
    • 0033474233 scopus 로고    scopus 로고
    • Missing covariates in generalized linear models when the missing data mechanism is nonignorable
    • Ibrahim J.G., Lipsitz S.R., Chen M.-H. Missing covariates in generalized linear models when the missing data mechanism is nonignorable. Journal of the Royal Statistical Society B 1999, 61:173-190.
    • (1999) Journal of the Royal Statistical Society B , vol.61 , pp. 173-190
    • Ibrahim, J.G.1    Lipsitz, S.R.2    Chen, M.-H.3
  • 38
  • 42
    • 77950916242 scopus 로고    scopus 로고
    • The linked importance sampler auxiliary variable (LISA) Metropolis-Hastings algorithm for distributions with intractable normalising constants
    • Available as MelNet Social Networks Laboratory Technical Report 08-01. Department of Psychology, University of Melbourne, Australia
    • Koskinen, J. (2008). The linked importance sampler auxiliary variable (LISA) Metropolis-Hastings algorithm for distributions with intractable normalising constants. Available as MelNet Social Networks Laboratory Technical Report 08-01. Department of Psychology, University of Melbourne, Australia. http://sna.unimelb.edu.au/publications/lab-tech-reports/tech_report.
    • (2008)
    • Koskinen, J.1
  • 43
    • 77950916820 scopus 로고    scopus 로고
    • Using latent variables to account for heterogeneity in exponential family random graph models
    • S.M. Ermakov, V.B. Melas, A.N. Pepelyshev (Eds.)
    • Koskinen J. Using latent variables to account for heterogeneity in exponential family random graph models. Proceedings of the 6th St. Petersburg Workshop on Simulation 2009, 845-849. S.M. Ermakov, V.B. Melas, A.N. Pepelyshev (Eds.).
    • (2009) Proceedings of the 6th St. Petersburg Workshop on Simulation , pp. 845-849
    • Koskinen, J.1
  • 44
    • 77950917036 scopus 로고    scopus 로고
    • Analysing exponential random graph (p-star) models with missing data using Bayesian data augmentation
    • Koskinen J., Robins G., Pattison P. Analysing exponential random graph (p-star) models with missing data using Bayesian data augmentation. Statistical Methodology 2010, 7:366-384.
    • (2010) Statistical Methodology , vol.7 , pp. 366-384
    • Koskinen, J.1    Robins, G.2    Pattison, P.3
  • 46
    • 33747485518 scopus 로고    scopus 로고
    • Effects of missing data in networks
    • Kossinets G. Effects of missing data in networks. Social Networks 2006, 28:247-268.
    • (2006) Social Networks , vol.28 , pp. 247-268
    • Kossinets, G.1
  • 47
    • 0000429141 scopus 로고
    • Cognitive social structures
    • Krackhardt D. Cognitive social structures. Social Networks 1987, 9:109-134.
    • (1987) Social Networks , vol.9 , pp. 109-134
    • Krackhardt, D.1
  • 48
    • 0019066492 scopus 로고
    • Mixtures of continuous and categorical variables in discriminant analysis
    • Krzanowski W.J. Mixtures of continuous and categorical variables in discriminant analysis. Biometrics 1980, 36:493-499.
    • (1980) Biometrics , vol.36 , pp. 493-499
    • Krzanowski, W.J.1
  • 49
    • 0002273444 scopus 로고
    • The boundary specification problem in social networks
    • Sage, London, R. Burt, M. Minor (Eds.)
    • Laumann E., Marsden P., Presnsky D. The boundary specification problem in social networks. Applied Network Analysis 1983, 18-34. Sage, London. R. Burt, M. Minor (Eds.).
    • (1983) Applied Network Analysis , pp. 18-34
    • Laumann, E.1    Marsden, P.2    Presnsky, D.3
  • 52
    • 0000337478 scopus 로고    scopus 로고
    • A conditional model for incomplete covariates in parametric regression models
    • Lipsitz S.R., Ibrahim J.G. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996, 83:916-922.
    • (1996) Biometrika , vol.83 , pp. 916-922
    • Lipsitz, S.R.1    Ibrahim, J.G.2
  • 56
    • 0000704344 scopus 로고
    • Maximum likelihood estimation for mixed continuous and categorical data with missing values
    • Little R.J.A., Schluchter M.D. Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika 1985, 72:497-512.
    • (1985) Biometrika , vol.72 , pp. 497-512
    • Little, R.J.A.1    Schluchter, M.D.2
  • 58
    • 45349086832 scopus 로고    scopus 로고
    • Specification of exponential-family random graph models: terms and computational aspects
    • Morris M., Handcock M.S., Hunter D.R. Specification of exponential-family random graph models: terms and computational aspects. Journal of Statistical Software 2008, 24(4):1548-7660.
    • (2008) Journal of Statistical Software , vol.24 , Issue.4 , pp. 1548-7660
    • Morris, M.1    Handcock, M.S.2    Hunter, D.R.3
  • 61
    • 84890215300 scopus 로고    scopus 로고
    • Conditional estimation of exponential random graph models from snowball sampling designs
    • in press
    • Pattison P.E., Robins G.L., Snijders T.A.B., Wang P. Conditional estimation of exponential random graph models from snowball sampling designs. Journal of Methermatical Psychology 2012, in press. 10.1016/j.jmp.2013.05.004.
    • (2012) Journal of Methermatical Psychology
    • Pattison, P.E.1    Robins, G.L.2    Snijders, T.A.B.3    Wang, P.4
  • 62
    • 0005193926 scopus 로고    scopus 로고
    • Exact sampling with coupled Markov chains and applications to statistical mechanics
    • Propp J., Wilson D. Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms 1996, 9:232-252.
    • (1996) Random Structures and Algorithms , vol.9 , pp. 232-252
    • Propp, J.1    Wilson, D.2
  • 64
    • 69549103031 scopus 로고    scopus 로고
    • Inferring missing links in partially observed social networks
    • Rhodes C., Jones P. Inferring missing links in partially observed social networks. Journal of the Operational Research Society 2009, 60:1373-1383.
    • (2009) Journal of the Operational Research Society , vol.60 , pp. 1373-1383
    • Rhodes, C.1    Jones, P.2
  • 67
    • 0035379539 scopus 로고    scopus 로고
    • Network models for social influence processes
    • Robins G.L., Pattison P.E., Elliot P. Network models for social influence processes. Psychometrika 2001, 66:161-190.
    • (2001) Psychometrika , vol.66 , pp. 161-190
    • Robins, G.L.1    Pattison, P.E.2    Elliot, P.3
  • 72
    • 0017133178 scopus 로고
    • Inference and missing data (with discussion)
    • Rubin D.B. Inference and missing data (with discussion). Biometrika 1976, 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 75
    • 84855997865 scopus 로고    scopus 로고
    • Instability, sensitivity, and degeneracy of discrete exponential families
    • Schweinberger M. Instability, sensitivity, and degeneracy of discrete exponential families. Journal of the American Statistical Association 2011, 106:1361-1370.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 1361-1370
    • Schweinberger, M.1
  • 76
    • 0003314308 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of exponential random graph models
    • April
    • Snijders T.A.B. Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure 2002, 3:April.
    • (2002) Journal of Social Structure , vol.3
    • Snijders, T.A.B.1
  • 77
    • 77956958458 scopus 로고    scopus 로고
    • Conditional marginalization for exponential random graph models
    • Snijders T.A.B. Conditional marginalization for exponential random graph models. Journal of Mathematical Sociology 2010, 34:239-252.
    • (2010) Journal of Mathematical Sociology , vol.34 , pp. 239-252
    • Snijders, T.A.B.1
  • 79
    • 84993768037 scopus 로고    scopus 로고
    • Macrostructure from microstructure: generating whole systems from ego networks
    • Smith J.A. Macrostructure from microstructure: generating whole systems from ego networks. Sociological Methodology 2012, 42:155-205.
    • (2012) Sociological Methodology , vol.42 , pp. 155-205
    • Smith, J.A.1
  • 80
    • 84973805614 scopus 로고
    • Nonrespondents in communication network studies: problems and possibilities
    • Stork D., Richards W.D. Nonrespondents in communication network studies: problems and possibilities. Group and Organization Management 1992, 17:193-202.
    • (1992) Group and Organization Management , vol.17 , pp. 193-202
    • Stork, D.1    Richards, W.D.2
  • 83
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner M.A., Wong W.H. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 1987, 82:528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 84
    • 0002975220 scopus 로고    scopus 로고
    • Model-based estimation with link-tracing sampling designs
    • Thompson S.K., Frank O. Model-based estimation with link-tracing sampling designs. Survey Methodology 2000, 26:87-98.
    • (2000) Survey Methodology , vol.26 , pp. 87-98
    • Thompson, S.K.1    Frank, O.2
  • 85
    • 0000576595 scopus 로고
    • Markov Chains for exploring posterior distributions (with discussion and a rejoinder by the author)
    • Tierney L. Markov Chains for exploring posterior distributions (with discussion and a rejoinder by the author). Annals of Statistics 1994, 22:1701-1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 86
    • 84875597478 scopus 로고    scopus 로고
    • Exponential random graph models for multilevel networks
    • Wang P., Robins G., Pattison P., Lazega E. Exponential random graph models for multilevel networks. Social Networks 2013, 35:96-115.
    • (2013) Social Networks , vol.35 , pp. 96-115
    • Wang, P.1    Robins, G.2    Pattison, P.3    Lazega, E.4
  • 88
    • 85004846275 scopus 로고
    • Statistical modelling of one-mode and two-mode networks: simultaneous analysis of graphs and bipartite graphs
    • Wasserman S., Iacobucci D. Statistical modelling of one-mode and two-mode networks: simultaneous analysis of graphs and bipartite graphs. British Journal of Mathematical and Statistical Psychology 1991, 13-43.
    • (1991) British Journal of Mathematical and Statistical Psychology , pp. 13-43
    • Wasserman, S.1    Iacobucci, D.2
  • 89
    • 0034381555 scopus 로고    scopus 로고
    • How to couple from the past using a read-once source of randomness
    • Wilson D. How to couple from the past using a read-once source of randomness. Random Structures and Algorithms 2000, 16:85-113.
    • (2000) Random Structures and Algorithms , vol.16 , pp. 85-113
    • Wilson, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.