메뉴 건너뛰기




Volumn 89, Issue , 2013, Pages 47-56

Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; BIOMEDICINE; CELL FUNCTION; CELL STRESS; CELLULAR DISTRIBUTION; CELLULAR PARAMETERS; ERYTHROCYTE; ERYTHROCYTE AGGREGATION; ERYTHROCYTE DEFORMABILITY; HEMATOCRIT; HYDRODYNAMICS; IMMERSION; MICROCIRCULATION; PRESSURE; PRIORITY JOURNAL; SEPARATION TECHNIQUE; SHEAR STRESS; SIMULATION;

EID: 84883191071     PISSN: 00262862     EISSN: 10959319     Source Type: Journal    
DOI: 10.1016/j.mvr.2013.05.002     Document Type: Article
Times cited : (71)

References (45)
  • 1
    • 51549086067 scopus 로고    scopus 로고
    • Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations
    • Barber J.O., Alberding J.P., Restrepo J.M., Secomb T.W. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Eng. 2008, 36:1690-1698.
    • (2008) Ann. Biomed. Eng. , vol.36 , pp. 1690-1698
    • Barber, J.O.1    Alberding, J.P.2    Restrepo, J.M.3    Secomb, T.W.4
  • 3
    • 33847756739 scopus 로고    scopus 로고
    • Hemodynamic effects of red blood cell aggregation
    • Baskurt O., Meiselman H. Hemodynamic effects of red blood cell aggregation. Indian J. Exp. Biol. 2007, 45:25-31.
    • (2007) Indian J. Exp. Biol. , vol.45 , pp. 25-31
    • Baskurt, O.1    Meiselman, H.2
  • 5
    • 0034121641 scopus 로고    scopus 로고
    • A model for red blood cell motion in bifurcating microvessels
    • El-Kareh A.W., Secomb T.W. A model for red blood cell motion in bifurcating microvessels. Int. J. Multiphase Flow 2000, 26:1545-1564.
    • (2000) Int. J. Multiphase Flow , vol.26 , pp. 1545-1564
    • El-Kareh, A.W.1    Secomb, T.W.2
  • 6
    • 0026911043 scopus 로고
    • A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations
    • Enden G., Popel A. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations. J. Biomech. Eng. 1992, 114:398-405.
    • (1992) J. Biomech. Eng. , vol.114 , pp. 398-405
    • Enden, G.1    Popel, A.2
  • 7
    • 0015411265 scopus 로고
    • Improved measurements of the erythrocyte geometry
    • Evans E.A., Fung Y.C. Improved measurements of the erythrocyte geometry. Microvasc. Res. 1972, 4:335-347.
    • (1972) Microvasc. Res. , vol.4 , pp. 335-347
    • Evans, E.A.1    Fung, Y.C.2
  • 9
    • 0021950637 scopus 로고
    • Nonuniform red cell distribution in 20 to 100μm bifurcations
    • Fenton B.M., Carr R.T., Cokelet G.R. Nonuniform red cell distribution in 20 to 100μm bifurcations. Microvasc. Res. 1985, 29:103-126.
    • (1985) Microvasc. Res. , vol.29 , pp. 103-126
    • Fenton, B.M.1    Carr, R.T.2    Cokelet, G.R.3
  • 10
    • 33747361304 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations
    • Hyakutake T., Matsumoto T., Yanase S. Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math. Comput. Simul. 2006, 72:134-140.
    • (2006) Math. Comput. Simul. , vol.72 , pp. 134-140
    • Hyakutake, T.1    Matsumoto, T.2    Yanase, S.3
  • 11
    • 47149114935 scopus 로고    scopus 로고
    • Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation
    • Hyakutake T., Tominaga S., Matsumoto T., Yanase S. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation. J. Biomech. Eng. 2008, 130:011014.
    • (2008) J. Biomech. Eng. , vol.130 , pp. 011014
    • Hyakutake, T.1    Tominaga, S.2    Matsumoto, T.3    Yanase, S.4
  • 13
    • 84862818864 scopus 로고    scopus 로고
    • Removal of malaria-infected red blood cells using magnetic cell separators: a computational study
    • Kim J., Massoudi M., Antaki J.F., Gandini A. Removal of malaria-infected red blood cells using magnetic cell separators: a computational study. Appl. Math. Comput. 2012, 218:6841-6850.
    • (2012) Appl. Math. Comput. , vol.218 , pp. 6841-6850
    • Kim, J.1    Massoudi, M.2    Antaki, J.F.3    Gandini, A.4
  • 14
    • 84859564891 scopus 로고    scopus 로고
    • Blood-plasma separation in Y-shaper bifurcating microfluidic channels: a dissipative particle dynamics simulation study
    • Li X., Popel A., Karniadakis G. Blood-plasma separation in Y-shaper bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys. Biol. 2012, 9:026010.
    • (2012) Phys. Biol. , vol.9 , pp. 026010
    • Li, X.1    Popel, A.2    Karniadakis, G.3
  • 15
    • 0344097945 scopus 로고    scopus 로고
    • Large deformation of living cells using laser traps
    • Lim C., Dao M., Suresh S., Sow C., Chew K. Large deformation of living cells using laser traps. Acta Mater. 2004, 52:1837-1845.
    • (2004) Acta Mater. , vol.52 , pp. 1837-1845
    • Lim, C.1    Dao, M.2    Suresh, S.3    Sow, C.4    Chew, K.5
  • 16
    • 0030472170 scopus 로고    scopus 로고
    • Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance
    • Maeda N., Suzuki Y., Tanaka J., Tateishi N. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. Heart Circ. Physiol. 1996, 271:H2454-H2461.
    • (1996) Am. J. Physiol. Heart Circ. Physiol. , vol.271
    • Maeda, N.1    Suzuki, Y.2    Tanaka, J.3    Tateishi, N.4
  • 17
    • 0345544556 scopus 로고
    • Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter
    • Mayrovitz H., Roy J. Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol. Heart Circ. Physiol. 1983, 245:H1031-H1038.
    • (1983) Am. J. Physiol. Heart Circ. Physiol. , vol.245
    • Mayrovitz, H.1    Roy, J.2
  • 18
    • 77952624093 scopus 로고    scopus 로고
    • Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles
    • Ong P., Namgung B., Johnson P., Kim S. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles. Am. J. Physiol. Heart Circ. Physiol. 2010, 298:H1870-H1878.
    • (2010) Am. J. Physiol. Heart Circ. Physiol. , vol.298
    • Ong, P.1    Namgung, B.2    Johnson, P.3    Kim, S.4
  • 19
    • 0020620121 scopus 로고
    • Hematocrit reduction in bifurcations due to plasma skimming
    • Perkkio J., Keskinen R. Hematocrit reduction in bifurcations due to plasma skimming. Bull. Math. Biol. 1983, 45:41-50.
    • (1983) Bull. Math. Biol. , vol.45 , pp. 41-50
    • Perkkio, J.1    Keskinen, R.2
  • 20
    • 0017424014 scopus 로고
    • Numerical analysis of blood flow in the heart
    • Peskin C.S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25:220-252.
    • (1977) J. Comput. Phys. , vol.25 , pp. 220-252
    • Peskin, C.S.1
  • 22
    • 0035839249 scopus 로고    scopus 로고
    • Effect of membrane bending stiffness on the deformation of capsules in simple shear flow
    • Pozrikidis C. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 2001, 440:269-291.
    • (2001) J. Fluid Mech. , vol.440 , pp. 269-291
    • Pozrikidis, C.1
  • 23
    • 28144433013 scopus 로고    scopus 로고
    • Microvascular blood viscosity in vivo and the endothelial surface layer
    • Pries A.R., Secomb T.W. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 2005, 289:H2657-H2664.
    • (2005) Am. J. Physiol. Heart Circ. Physiol. , vol.289
    • Pries, A.R.1    Secomb, T.W.2
  • 25
  • 26
    • 0030271188 scopus 로고    scopus 로고
    • Biophysical aspects of blood flow in the microvasculature
    • Pries A., Secomb T., Gaethgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 1996, 32:654-667.
    • (1996) Cardiovasc. Res. , vol.32 , pp. 654-667
    • Pries, A.1    Secomb, T.2    Gaethgens, P.3
  • 31
    • 77953752973 scopus 로고    scopus 로고
    • Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers
    • Tan Y., Sun D., Wang J., Huang W. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Trans. Biomed. Eng. 2010, 57:1816-1825.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , pp. 1816-1825
    • Tan, Y.1    Sun, D.2    Wang, J.3    Huang, W.4
  • 32
    • 84857444745 scopus 로고    scopus 로고
    • Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method
    • Vahidkhah K., Fatouraee N. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method. Int. J. Numer. Methods Biomed. Eng. 2012, 28:239-256.
    • (2012) Int. J. Numer. Methods Biomed. Eng. , vol.28 , pp. 239-256
    • Vahidkhah, K.1    Fatouraee, N.2
  • 33
    • 68649112845 scopus 로고    scopus 로고
    • Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings
    • Vazquez B., Martini J., Negrete A., Cabrales P., Tsai A., Intaglietta M. Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings. Biorheology 2009, 46:167-179.
    • (2009) Biorheology , vol.46 , pp. 167-179
    • Vazquez, B.1    Martini, J.2    Negrete, A.3    Cabrales, P.4    Tsai, A.5    Intaglietta, M.6
  • 34
    • 37249032888 scopus 로고    scopus 로고
    • Chapter 60: mechanics and deformability of hematocytes
    • CRC, Boca Raton, FL, J.D. Bronzino (Ed.)
    • Waugh R.E., Hochmuth R.M. Chapter 60: mechanics and deformability of hematocytes. Biomedical Engineering Fundamentals 2006, 60-63. CRC, Boca Raton, FL. 3rd edition. J.D. Bronzino (Ed.).
    • (2006) Biomedical Engineering Fundamentals , pp. 60-63
    • Waugh, R.E.1    Hochmuth, R.M.2
  • 35
    • 77955176922 scopus 로고    scopus 로고
    • Shear stress variation induced by red blood cell motion in microvessel
    • Xiong W., Zhang J. Shear stress variation induced by red blood cell motion in microvessel. Ann. Biomed. Eng. 2010, 38:2649-2659.
    • (2010) Ann. Biomed. Eng. , vol.38 , pp. 2649-2659
    • Xiong, W.1    Zhang, J.2
  • 36
    • 84861100461 scopus 로고    scopus 로고
    • Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects
    • Xiong W., Zhang J. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Biomech. Model. Mechanobiol. 2012, 11:575-583.
    • (2012) Biomech. Model. Mechanobiol. , vol.11 , pp. 575-583
    • Xiong, W.1    Zhang, J.2
  • 38
    • 84859413918 scopus 로고    scopus 로고
    • Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution
    • Yalcin O., Wang Q., Johnson P., Palmer A., Cabrales P. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution. Biorheology 2011, 48:277-291.
    • (2011) Biorheology , vol.48 , pp. 277-291
    • Yalcin, O.1    Wang, Q.2    Johnson, P.3    Palmer, A.4    Cabrales, P.5
  • 39
    • 84864587029 scopus 로고    scopus 로고
    • Cell-free layer and wall shear stress variation in microvessels
    • Yin X., Zhang J. Cell-free layer and wall shear stress variation in microvessels. Biorheology 2012, 49:261-270.
    • (2012) Biorheology , vol.49 , pp. 261-270
    • Yin, X.1    Zhang, J.2
  • 40
    • 84862820929 scopus 로고    scopus 로고
    • An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method
    • Yin X., Zhang J. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J. Comput. Phys. 2012, 231:4295-4303.
    • (2012) J. Comput. Phys. , vol.231 , pp. 4295-4303
    • Yin, X.1    Zhang, J.2
  • 41
    • 79551472188 scopus 로고    scopus 로고
    • Lattice Boltzmann method for microfluidics: models and applications
    • Zhang J. Lattice Boltzmann method for microfluidics: models and applications. Microfluid. Nanofluid. 2011, 10(1):28.
    • (2011) Microfluid. Nanofluid. , vol.10 , Issue.1 , pp. 28
    • Zhang, J.1
  • 42
    • 80053545585 scopus 로고    scopus 로고
    • Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels
    • Zhang J. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels. Microcirculation 2011, 18:562-573.
    • (2011) Microcirculation , vol.18 , pp. 562-573
    • Zhang, J.1
  • 43
    • 38049165651 scopus 로고    scopus 로고
    • An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows
    • Zhang J., Johnson P.C., Popel A.S. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 2007, 4:285-295.
    • (2007) Phys. Biol. , vol.4 , pp. 285-295
    • Zhang, J.1    Johnson, P.C.2    Popel, A.S.3
  • 44
    • 37249028611 scopus 로고    scopus 로고
    • Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method
    • Zhang J., Johnson P.C., Popel A.S. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J. Biomech. 2008, 41:47-55.
    • (2008) J. Biomech. , vol.41 , pp. 47-55
    • Zhang, J.1    Johnson, P.C.2    Popel, A.S.3
  • 45
    • 64049087988 scopus 로고    scopus 로고
    • Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows
    • Zhang J., Johnson P.C., Popel A.S. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 2009, 77:265-272.
    • (2009) Microvasc. Res. , vol.77 , pp. 265-272
    • Zhang, J.1    Johnson, P.C.2    Popel, A.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.