메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 239-256

Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method

Author keywords

IB LBM; Intercellular interaction; Microcirculation; Neo Hookean elastic; Red blood cell

Indexed keywords

BENDING RESISTANCE; BLOOD FLOW; BOLTZMANN METHODS; CELL AGGREGATES; ELASTIC MODELS; HYDRODYNAMIC PROPERTIES; IB-LBM; INCOMPRESSIBLE NEWTONIAN FLUID; INTERCELLULAR INTERACTIONS; MECHANICAL RESISTANCE; MEMBRANE ADHESION; MORSE POTENTIALS; NEO-HOOKEAN ELASTIC; POISEUILLE FLOW; RED BLOOD CELL; VISCOUS FORCES;

EID: 84857444745     PISSN: 20407939     EISSN: 20407947     Source Type: Journal    
DOI: 10.1002/cnm.1463     Document Type: Article
Times cited : (26)

References (34)
  • 1
    • 0003598420 scopus 로고
    • World Scientific Publishing Company: London
    • Mazumdar JN. Biofluid Mechanics. World Scientific Publishing Company: London, 1992.
    • (1992) Biofluid Mechanics
    • Mazumdar, J.N.1
  • 3
    • 33847048618 scopus 로고    scopus 로고
    • Biomechanics approaches to studying human diseases
    • Lee GYH, Lim CT. Biomechanics approaches to studying human diseases. Trends in Biotechnology 2007; 25:111-118.
    • (2007) Trends in Biotechnology , vol.25 , pp. 111-118
    • Lee, G.Y.H.1    Lim, C.T.2
  • 4
    • 33749132791 scopus 로고    scopus 로고
    • Mechanical response of human red blood cells in health and disease: some structure-property-function relationships
    • Suresh S. Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. Journal of Materials Research 2006; 21:1871-1877.
    • (2006) Journal of Materials Research , vol.21 , pp. 1871-1877
    • Suresh, S.1
  • 5
    • 0035738371 scopus 로고    scopus 로고
    • A two-phase model for blood flow in narrow tubes with increased viscosity near the wall
    • Sharan M, Popel AS. A two-phase model for blood flow in narrow tubes with increased viscosity near the wall. Biorheology 2001; 38:415-428.
    • (2001) Biorheology , vol.38 , pp. 415-428
    • Sharan, M.1    Popel, A.S.2
  • 6
    • 0001422594 scopus 로고
    • The suspension stability of blood
    • Fahraeus R. The suspension stability of blood. Physiological Reviews 1929; 9:241-274.
    • (1929) Physiological Reviews , vol.9 , pp. 241-274
    • Fahraeus, R.1
  • 7
    • 0029347317 scopus 로고
    • Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow
    • Pozrikidis C. Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. Journal of Fluid Mechanics 1995; 297:123-152.
    • (1995) Journal of Fluid Mechanics , vol.297 , pp. 123-152
    • Pozrikidis, C.1
  • 8
    • 0347596462 scopus 로고    scopus 로고
    • Numerical simulation of the flow-induced deformation of red blood cells
    • Pozrikidis C. Numerical simulation of the flow-induced deformation of red blood cells. Annals of Biomedical Engineering 2003; 31:1194-1205.
    • (2003) Annals of Biomedical Engineering , vol.31 , pp. 1194-1205
    • Pozrikidis, C.1
  • 9
    • 0000266020 scopus 로고    scopus 로고
    • Large deformation of red blood cell ghosts in a simple shear flow
    • Eggleton CD, Popel AS. Large deformation of red blood cell ghosts in a simple shear flow. Physics of Fluids 1998; 10(8):1834-1845.
    • (1998) Physics of Fluids , vol.10 , Issue.8 , pp. 1834-1845
    • Eggleton, C.D.1    Popel, A.S.2
  • 10
    • 0001142668 scopus 로고
    • Flow Behavior of Erythrocytes - part II: Particle Motions in Concentrated Suspensions of Ghost Cells
    • Goldsmith HL, Marlow JC. Flow Behavior of Erythrocytes - part II: Particle Motions in Concentrated Suspensions of Ghost Cells. Journal of Colloid and Interface Science 1979; 71(2):383-407.
    • (1979) Journal of Colloid and Interface Science , vol.71 , Issue.2 , pp. 383-407
    • Goldsmith, H.L.1    Marlow, J.C.2
  • 11
    • 33947621655 scopus 로고    scopus 로고
    • Mesoscale simulation of blood flow in small vessels
    • Bagchi P. Mesoscale simulation of blood flow in small vessels. Biophysical Journal 2007; 92(6):1858-1877.
    • (2007) Biophysical Journal , vol.92 , Issue.6 , pp. 1858-1877
    • Bagchi, P.1
  • 14
    • 21244497888 scopus 로고    scopus 로고
    • Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis
    • Sun C, Munn LL. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophysical Journal 2005; 88(3):1635-1645.
    • (2005) Biophysical Journal , vol.88 , Issue.3 , pp. 1635-1645
    • Sun, C.1    Munn, L.L.2
  • 15
    • 39449095704 scopus 로고    scopus 로고
    • Lattice-Boltzmann simulation of blood flow in digitized vessel networks
    • Sun C, Munn LL. Lattice-Boltzmann simulation of blood flow in digitized vessel networks. Computers and Mathematics with Applications 2008; 55:1594-1600.
    • (2008) Computers and Mathematics with Applications , vol.55 , pp. 1594-1600
    • Sun, C.1    Munn, L.L.2
  • 16
    • 31944451563 scopus 로고    scopus 로고
    • Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: a lattice Boltzmann analysis
    • Sun C, Munn LL. Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: a lattice Boltzmann analysis. Physica A 2006; 362:191-196.
    • (2006) Physica A , vol.362 , pp. 191-196
    • Sun, C.1    Munn, L.L.2
  • 18
    • 70349482851 scopus 로고    scopus 로고
    • A particle-based model for the transport of erythrocyte in capillaries
    • Hosseini SM, Feng JJ. A particle-based model for the transport of erythrocyte in capillaries. Chemical Engineering Science 2009; 64:4488-4497.
    • (2009) Chemical Engineering Science , vol.64 , pp. 4488-4497
    • Hosseini, S.M.1    Feng, J.J.2
  • 19
    • 11244275011 scopus 로고    scopus 로고
    • Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics
    • Liu Y, Zhang L, Wang X, Liu WK. Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics. International Journal for Numerical Methods in Fluids 2004; 46:1237-1252.
    • (2004) International Journal for Numerical Methods in Fluids , vol.46 , pp. 1237-1252
    • Liu, Y.1    Zhang, L.2    Wang, X.3    Liu, W.K.4
  • 20
    • 38049165651 scopus 로고    scopus 로고
    • An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows
    • Zhang J, Johnson PC, Popel AS. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Physical Biology 2007; 4:285-295.
    • (2007) Physical Biology , vol.4 , pp. 285-295
    • Zhang, J.1    Johnson, P.C.2    Popel, A.S.3
  • 21
    • 37249028611 scopus 로고    scopus 로고
    • Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method
    • Zhang J, Johnson PC, Popel AS. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. Journal of Biomechanics 2008; 41:47-55.
    • (2008) Journal of Biomechanics , vol.41 , pp. 47-55
    • Zhang, J.1    Johnson, P.C.2    Popel, A.S.3
  • 22
    • 64049087988 scopus 로고    scopus 로고
    • Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows
    • Zhang J, Johnson PC, Popel AS. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvascular Research 2009; 77:265-272.
    • (2009) Microvascular Research , vol.77 , pp. 265-272
    • Zhang, J.1    Johnson, P.C.2    Popel, A.S.3
  • 25
    • 73449095734 scopus 로고    scopus 로고
    • A lattice Boltzmann implicit immersed boundary method for fluid-structure interaction
    • Hao J, Zhu L. A lattice Boltzmann implicit immersed boundary method for fluid-structure interaction. Computers and Mathematics with Applications 2009; 59(1):185-193.
    • (2009) Computers and Mathematics with Applications , vol.59 , Issue.1 , pp. 185-193
    • Hao, J.1    Zhu, L.2
  • 26
    • 33751544551 scopus 로고    scopus 로고
    • The immersed boundary method
    • Peskin S. The immersed boundary method. Acta Numerica 2002; 11:479-517.
    • (2002) Acta Numerica , vol.11 , pp. 479-517
    • Peskin, S.1
  • 28
    • 0020957075 scopus 로고
    • Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette spiration tests
    • Evans EA. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette spiration tests. Biophysical Journal 1983; 43:27-30.
    • (1983) Biophysical Journal , vol.43 , pp. 27-30
    • Evans, E.A.1
  • 30
    • 85074958682 scopus 로고    scopus 로고
    • 8th Revised and Enlargened Edition. Springer: Berlin, fig 1.12
    • Schlichting H, Gersten K. Boundary Layer Theory, 8th Revised and Enlargened Edition. Springer: Berlin, 2000. pp. 19, fig 1.12.
    • (2000) Boundary Layer Theory , pp. 19
    • Schlichting, H.1    Gersten, K.2
  • 31
    • 77955176922 scopus 로고    scopus 로고
    • Shear Stress Variation Induced by Red Blood Cell Motion in Microvessel
    • Xiong W, Zhang J. Shear Stress Variation Induced by Red Blood Cell Motion in Microvessel. Annals of Biomedical engineering 2010; 38(8):2649-2659.
    • (2010) Annals of Biomedical engineering , vol.38 , Issue.8 , pp. 2649-2659
    • Xiong, W.1    Zhang, J.2
  • 32
    • 28144433013 scopus 로고    scopus 로고
    • Microvascular blood viscosity in vivo and the endothelial surface layer
    • Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. American Journal of Physiology 2005; 289:H2657-H2664.
    • (2005) American Journal of Physiology , vol.289
    • Pries, A.R.1    Secomb, T.W.2
  • 33
    • 0014668756 scopus 로고
    • Deformation of red blood cells in capillaries
    • Skalak R, Branemark P. Deformation of red blood cells in capillaries. Science 1969; 164:717-719.
    • (1969) Science , vol.164 , pp. 717-719
    • Skalak, R.1    Branemark, P.2
  • 34
    • 0027312475 scopus 로고
    • Effect of Red Blood Cell Shape on Oxygen Transport in Capillaries
    • Wang C, Popel AS. Effect of Red Blood Cell Shape on Oxygen Transport in Capillaries. Mathematical Biosciences 1993; 116:89-110.
    • (1993) Mathematical Biosciences , vol.116 , pp. 89-110
    • Wang, C.1    Popel, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.