메뉴 건너뛰기




Volumn 120, Issue , 2013, Pages 504-508

Designing and modeling of ultra low voltage and ultra low power LNA using ANN and ANFIS for Bluetooth applications

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); Artificial neural network (ANN); Low noise amplifier (LNA); Multilayer perceptron (MLP); Radial basis function (RBF)

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; BLUETOOTH APPLICATION; FREQUENCY RANGES; INDUCTIVE DEGENERATION; MULTI LAYER PERCEPTRON; NEURAL MODELING; RADIAL BASIS FUNCTION(RBF); ULTRA-LOW-VOLTAGE;

EID: 84882853340     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.04.021     Document Type: Article
Times cited : (10)

References (17)
  • 1
    • 81155134727 scopus 로고    scopus 로고
    • Ultra low voltage, ultra low power low noise amplifier for 2GHz applications
    • Karimi Gh.R., Babaei Sedaghat S. Ultra low voltage, ultra low power low noise amplifier for 2GHz applications. Int. J. Electron. Commun. (AEU) 2012, 66:18-22.
    • (2012) Int. J. Electron. Commun. (AEU) , vol.66 , pp. 18-22
    • Karimi, G.1    Babaei Sedaghat, S.2
  • 2
    • 13444252688 scopus 로고    scopus 로고
    • A 0.6V CMOS low noise amplifier for 2.4GHz application, in: Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1
    • C. Lung Hsiao, Ro-Min Weng, Kun-Yi Lin, A 0.6V CMOS low noise amplifier for 2.4GHz application, in: Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1, 2004, pp. 277-280.
    • (2004) , pp. 277-280
    • Lung Hsiao, C.1    Weng, R.-M.2    Lin, K.-Y.3
  • 4
    • 77955848751 scopus 로고    scopus 로고
    • A 1V, 2.4GHz low power CMOS common source LNA for WSN applications
    • Sasilatha T., Raja J. A 1V, 2.4GHz low power CMOS common source LNA for WSN applications. Int. J. Electron. Commun. (AEU) 2010, 64:940-946.
    • (2010) Int. J. Electron. Commun. (AEU) , vol.64 , pp. 940-946
    • Sasilatha, T.1    Raja, J.2
  • 5
    • 0038306219 scopus 로고    scopus 로고
    • A 2GHz 16dBm IIP3 low noise amplifier in 0.25μm CMOS technology, in: Proceedings of IEEE International Solid-State Circuits Conference
    • Yong-Sik Youn, Jae-Hong Chang, A 2GHz 16dBm IIP3 low noise amplifier in 0.25μm CMOS technology, in: Proceedings of IEEE International Solid-State Circuits Conference, 2003, pp. 452-507.
    • (2003) , pp. 452-507
    • Youn, Y.-S.1    Chang, J.-H.2
  • 6
    • 77952287368 scopus 로고    scopus 로고
    • New study on neural networks, the essential order of approximation, neural networks
    • Wang J., Xu Z. New study on neural networks, the essential order of approximation, neural networks. Off. J. Int. Neural Network Soc. 2010, 23:618-624.
    • (2010) Off. J. Int. Neural Network Soc. , vol.23 , pp. 618-624
    • Wang, J.1    Xu, Z.2
  • 7
    • 84882860013 scopus 로고    scopus 로고
    • Neural Networks for RF and Microwave Design: Toward Automatic Model Generation, Ph.D. thesis, Ottawa, Carleton University
    • V.K. Devabhaktuni, Neural Networks for RF and Microwave Design: Toward Automatic Model Generation, Ph.D. thesis, Ottawa, Carleton University, 2003.
    • (2003)
    • Devabhaktuni, V.K.1
  • 8
    • 84882907766 scopus 로고    scopus 로고
    • Design and Optimization of Microwave Circuits and System Using Artificial Intelligence Techniques, Ph.D. thesis, Georgia Institute of Technology
    • R.J. Pratap, Design and Optimization of Microwave Circuits and System Using Artificial Intelligence Techniques, Ph.D. thesis, Georgia Institute of Technology, 2005.
    • (2005)
    • Pratap, R.J.1
  • 9
    • 67349263818 scopus 로고    scopus 로고
    • Sequential modeling of a low noise amplifier with neural networks and active learning
    • Gorissen D., Tommasi L.D., Crombecq K. Sequential modeling of a low noise amplifier with neural networks and active learning. Neural Comput. Appl. 2009, 18:485-494.
    • (2009) Neural Comput. Appl. , vol.18 , pp. 485-494
    • Gorissen, D.1    Tommasi, L.D.2    Crombecq, K.3
  • 10
    • 84882862840 scopus 로고    scopus 로고
    • Introduction to radial basis function networks, Centre for Cognitive Science, University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW, Scotland
    • M.J. Orr, Introduction to radial basis function networks, Centre for Cognitive Science, University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, 1996.
    • (1996)
    • Orr, M.J.1
  • 12
    • 0042308605 scopus 로고    scopus 로고
    • Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping, microwave theory and techniques
    • Devabhaktuni V.K., Chattaraj B. Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping, microwave theory and techniques. IEEE Trans. 2003, 51:1822-1833.
    • (2003) IEEE Trans. , vol.51 , pp. 1822-1833
    • Devabhaktuni, V.K.1    Chattaraj, B.2
  • 13
    • 84882899457 scopus 로고    scopus 로고
    • Design of radial basis function network using adaptive particle swarm optimization and orthogonal least squares
    • Moradi Zirkohi M., Fateh M.M., Akbarzade A. Design of radial basis function network using adaptive particle swarm optimization and orthogonal least squares. J. Software Eng. Appl. 2010, 3:704-708.
    • (2010) J. Software Eng. Appl. , vol.3 , pp. 704-708
    • Moradi Zirkohi, M.1    Fateh, M.M.2    Akbarzade, A.3
  • 16
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15:116-132.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 17
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J.S.R., Sun C.T. Neuro-fuzzy modeling and control. Proc. IEEE 1995, 83:378-406.
    • (1995) Proc. IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.