메뉴 건너뛰기




Volumn , Issue , 2013, Pages 4405-4409

Hypoglycemia prediction using extreme learning machine (ELM) and regularized ELM

Author keywords

continuous glucose monitoring (CGM); extreme learning machine (ELM); hypoglycemia prediction; Regularized Extreme Learning Machine (RELM)

Indexed keywords

BLOOD GLUCOSE; CONTINUOUS GLUCOSEMONITORING (CGM); DIABETES MANAGEMENT; EXTREME LEARNING MACHINE; PREDICTION HORIZON; RECEIVER OPERATING CHARACTERISTIC CURVES; ROOT MEAN SQUARE ERRORS; SENSITIVITY AND SPECIFICITY;

EID: 84882799564     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCDC.2013.6561727     Document Type: Conference Paper
Times cited : (22)

References (23)
  • 2
    • 77957127872 scopus 로고    scopus 로고
    • "Smart" Continuous glucose monitoring sensors: On-line signal processing issues
    • G. Sparacino, A. Facchinetti, and C. Cobelli, "Smart" Continuous glucose monitoring sensors: on-line signal processing issues, Sensors, vol. 10, 6751-6772, 2010.
    • (2010) Sensors , vol.10 , pp. 6751-6772
    • Sparacino, G.1    Facchinetti, A.2    Cobelli, C.3
  • 5
    • 14844348734 scopus 로고    scopus 로고
    • The extended Kalman filter for continuous glucose monitoring
    • E. J. Knobbe and B. Buckingham, The extended Kalman filter for continuous glucose monitoring, Diabetes Technology & Therapeutics, vol. 7, 15-27, 2005.
    • (2005) Diabetes Technology & Therapeutics , vol.7 , pp. 15-27
    • Knobbe, E.J.1    Buckingham, B.2
  • 6
    • 54749149727 scopus 로고    scopus 로고
    • Hypoglycemia detection and prediction using continuous glucose monitoringla study on hypoglycemic clamp data
    • C. C. Palerm and B. W. Bequette, Hypoglycemia detection and prediction using continuous glucose monitoringla study on hypoglycemic clamp data, J Diabetes Sci Technol, vol. 1, 624-629, 2007.
    • (2007) J Diabetes Sci Technol , vol.1 , pp. 624-629
    • Palerm, C.C.1    Bequette, B.W.2
  • 7
    • 77955652578 scopus 로고    scopus 로고
    • Realtime hypoglycemia prediction suite using continuous glucose monitoring: A safety net for the artificial pancreas
    • E. Dassau, F. Cameron, H. Lee, B. W. Bequette, Realtime hypoglycemia prediction suite using continuous glucose monitoring: a safety net for the artificial pancreas, Diabetes Care, vol. 33, 1249-1254, 2010.
    • (2010) Diabetes Care , vol.33 , pp. 1249-1254
    • Dassau, E.1    Cameron, F.2    Lee, H.3    Bequette, B.W.4
  • 9
    • 0020628854 scopus 로고
    • The physiological effects of insulin-induced hypoglycaemia in man: Responses at differing levels of blood glucose
    • E. Gale, T. Bennett, I. Macdonald, J. Holst, and J. Matthews, The physiological effects of insulin-induced hypoglycaemia in man: responses at differing levels of blood glucose, Clinical science (London), vol. 65, 263-271, 1983.
    • (1983) Clinical Science (London) , vol.65 , pp. 263-271
    • Gale, E.1    Bennett, T.2    Macdonald, I.3    Holst, J.4    Matthews, J.5
  • 10
    • 0025829893 scopus 로고
    • Physiological disturbances in hypoglycaemia: Effect on subjective awareness
    • S. Heller and I. Macdonald, Physiological disturbances in hypoglycaemia: effect on subjective awareness, Clinical. Science, vol. 81, 1-9, 1991.
    • (1991) Clinical. Science , vol.81 , pp. 1-9
    • Heller, S.1    Macdonald, I.2
  • 11
    • 0026099752 scopus 로고    scopus 로고
    • Unexplained deaths of type 1 diabetic patients
    • R. Tattersall and G. Gill, Unexplained deaths of type 1 diabetic patients, Diabetic Medicine, vol. 8, 49-58, 2009.
    • (2009) Diabetic Medicine , vol.8 , pp. 49-58
    • Tattersall, R.1    Gill, G.2
  • 12
    • 84863776233 scopus 로고    scopus 로고
    • Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model
    • S. H. Ling and H. T. Nguyen, Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model, Artificial Intelligence in Medicine, vol. 55, 177-184, 2012.
    • (2012) Artificial Intelligence in Medicine , vol.55 , pp. 177-184
    • Ling, S.H.1    Nguyen, H.T.2
  • 13
    • 84862124606 scopus 로고    scopus 로고
    • Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection
    • N. Nuryani, S. S. H. Ling, and H. Nguyen, Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection, Annals of Biomedical Engineering, 1-12, 2012.
    • (2012) Annals of Biomedical Engineering , pp. 1-12
    • Nuryani, N.1    Ling, S.S.H.2    Nguyen, H.3
  • 14
    • 84887491766 scopus 로고    scopus 로고
    • Hybrid PSO-based variable translation wavelet neural network and its application to hypoglycemia detection system
    • P. P. San, S. H. Ling, and H. T. Nguyen, Hybrid PSO-based variable translation wavelet neural network and its application to hypoglycemia detection system, Neural Computing & Applications, 1-8, 2012.
    • (2012) Neural Computing & Applications , pp. 1-8
    • San, P.P.1    Ling, S.H.2    Nguyen, H.T.3
  • 16
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine, in computational intelligence and data mining, 2009
    • W. Deng, Q. Zheng, and L. Chen, Regularized extreme learning machine, in Computational Intelligence and Data Mining, 2009. CIDM'09. IEEE Symposium on, 2009, 389-395.
    • (2009) CIDM'09. IEEE Symposium On , pp. 389-395
    • Deng, W.1    Zheng, Q.2    Chen, L.3
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing, vol. 70, 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 18
    • 50049107110 scopus 로고    scopus 로고
    • JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: Research design and methods
    • JDRF CGM Study Group
    • JDRF CGM Study Group, JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: research design and methods, Diabetes Technology & Therapeutics, vol. 10, 310, 2008.
    • (2008) Diabetes Technology & Therapeutics , vol.10 , pp. 310
  • 20
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • G. B. Huang, M. B. Li, L. Chen, and C. K. Siew, Incremental extreme learning machine with fully complex hidden nodes, Neurocomputing, vol. 71, 576-583, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 576-583
    • Huang, G.B.1    Li, M.B.2    Chen, L.3    Siew, C.K.4
  • 22
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G. B. Huang, L. Chen, and C. K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Transactions on Neural Networks, vol. 17, 879-892, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 23
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Z. L. Sun, T. M. Choi, K. F. Au, and Y. Yu, Sales forecasting using extreme learning machine with applications in fashion retailing, Decision Support Systems, vol. 46, 411-419, 2008.
    • (2008) Decision Support Systems , vol.46 , pp. 411-419
    • Sun, Z.L.1    Choi, T.M.2    Au, K.F.3    Yu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.