메뉴 건너뛰기




Volumn 20, Issue 5, 2013, Pages 931-939

Improving performance of natural language processing part-of-speech tagging on clinical narratives through domain adaptation

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ADAPTATION; ARTICLE; NARRATIVE; NATURAL LANGUAGE PROCESSING; PART OF SPEECH TAGGING; PERFORMANCE; PROBABILITY;

EID: 84882738067     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2012-001453     Document Type: Article
Times cited : (38)

References (59)
  • 2
    • 85008405502 scopus 로고    scopus 로고
    • Inventors; Probabilistic method for natural language processing and for encoding free-text data into a medical database by utilizing a Bayesian network to perform spell checking of words.
    • US patent 6292771. Alexandria, VA: United States Patent and Trademark Office, 2001 Sept 18.
    • Haug PJ, Koehler SB, Christensen LM, et al. Inventors; Probabilistic method for natural language processing and for encoding free-text data into a medical database by utilizing a Bayesian network to perform spell checking of words. US patent 6292771. Alexandria, VA: United States Patent and Trademark Office, 2001 Sept 18.
    • Haug, P.J.1    Koehler, S.B.2    Christensen, L.M.3
  • 3
    • 0346580118 scopus 로고    scopus 로고
    • Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports
    • Jain NL, Friedman C. Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports. Proceedings of AMIA Annual Fall Symposium; 1997:829-33.
    • (1997) Proceedings of AMIA Annual Fall Symposium , pp. 829-833
    • Jain, N.L.1    Friedman, C.2
  • 4
    • 0030333390 scopus 로고    scopus 로고
    • Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports
    • Jain NL, Knirsch CA, Friedman C, et al. Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. Proceedings of AMIA Annual Fall Symposium; 1996:542-6.
    • (1996) Proceedings of AMIA Annual Fall Symposium , pp. 542-546
    • Jain, N.L.1    Knirsch, C.A.2    Friedman, C.3
  • 5
    • 84892627946 scopus 로고    scopus 로고
    • Performance of a real-time electronic screening tool for pneumonia [abstract]
    • Jones B, Ferraro JP, Haug P, et al. Performance of a real-time electronic screening tool for pneumonia [abstract]. Am J Respir Crit Care Med 2012;185:A5136.
    • (2012) Am J Respir Crit Care Med , vol.185
    • Jones, B.1    Ferraro, J.P.2    Haug, P.3
  • 6
    • 84892628304 scopus 로고    scopus 로고
    • Emergency department physician experience with a real time, electronic pneumonia decision support tool [abstract]
    • Vines C, Collingsridge D, Jones B, et al. Emergency department physician experience with a real time, electronic pneumonia decision support tool [abstract]. Acad Emerg Med 2012;19(Suppl. 1):S49.
    • (2012) Acad Emerg Med , vol.19 , Issue.SUPPL. 1
    • Vines, C.1    Collingsridge, D.2    Jones, B.3
  • 7
    • 35748944734 scopus 로고    scopus 로고
    • Multilingual dependency parsing: a pipeline approach
    • Amsterdam: John Benjamins Publishing Co. In: Nicolov N, Bontcheva K, Angelova G, et al.
    • Chang MW, Do Q, Roth D. Multilingual dependency parsing: a pipeline approach. In: Nicolov N, Bontcheva K, Angelova G, et al. Recent advances in natural language processing IV. Amsterdam: John Benjamins Publishing Co., 2007:55-78.
    • (2007) Recent advances in natural language processing IV. , pp. 55-78
    • Chang, M.W.1    Do, Q.2    Roth, D.3
  • 8
    • 80053379378 scopus 로고    scopus 로고
    • Solving the problem of cascading errors: approximate Bayesian inference for linguistic annotation pipelines
    • Finkel JR, Manning CD, Ng AY. Solving the problem of cascading errors: approximate Bayesian inference for linguistic annotation pipelines. Proceedings of EMNLP; 2006:618-26.
    • (2006) Proceedings of EMNLP , pp. 618-626
    • Finkel, J.R.1    Manning, C.D.2    Ng, A.Y.3
  • 9
    • 80053240828 scopus 로고    scopus 로고
    • Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions
    • Chapman WW, Nadkarni PM, Hirschman L, et al. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J Am Med Inform Assoc 2011;18:540-3.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 540-543
    • Chapman, W.W.1    Nadkarni, P.M.2    Hirschman, L.3
  • 10
    • 84882756568 scopus 로고    scopus 로고
    • UMLS Reference Manual. Specialist lexicon and lexical tools. Bethesda, MD: National Library of Medicine (US)(accessed 7 Jul 2012).
    • UMLS Reference Manual. Specialist lexicon and lexical tools. Bethesda, MD: National Library of Medicine (US); http://www.ncbi.nlm.nih.gov/books/NBK9680/ (accessed 7 Jul 2012).
  • 11
    • 84894965898 scopus 로고    scopus 로고
    • A transformational-based learner for dependency grammars in discharge summaries
    • Campbell DA, Johnson SB. A transformational-based learner for dependency grammars in discharge summaries. Proceedings of ACL; 2002;3:37-44.
    • (2002) Proceedings of ACL , vol.3 , pp. 37-44
    • Campbell, D.A.1    Johnson, S.B.2
  • 14
    • 33646819463 scopus 로고    scopus 로고
    • Detecting structural metadata with decision trees and transformation-based learning
    • Kim J, Schwarm SE, Ostendorf M. Detecting structural metadata with decision trees and transformation-based learning. Proceedings of HLT/NAACL; 2004:137-44.
    • (2004) Proceedings of HLT/NAACL , pp. 137-144
    • Kim, J.1    Schwarm, S.E.2    Ostendorf, M.3
  • 16
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008;35:128-44.
    • (2008) Yearb Med Inform , vol.35 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 17
    • 0036706501 scopus 로고    scopus 로고
    • Two biomedical sublanguages: a description based on the theories of Zellig Harris
    • Friedman C, Kra P, Rzhetsky A. Two biomedical sublanguages: a description based on the theories of Zellig Harris. J Biomed Inform 2002;35:222-35.
    • (2002) J Biomed Inform , vol.35 , pp. 222-235
    • Friedman, C.1    Kra, P.2    Rzhetsky, A.3
  • 18
    • 70349473421 scopus 로고    scopus 로고
    • Semantic text parsing for patient records
    • New York: Springer-Verlag, In: Chen H, Fuller S, Friedman C. 1st edn.
    • Friedman C. Semantic text parsing for patient records. In: Chen H, Fuller S, Friedman C. Medical informatics: knowledge management and data mining in biomedicine. 1st edn. New York: Springer-Verlag, 2005:423-48.
    • (2005) Medical informatics: knowledge management and data mining in biomedicine. , pp. 423-448
    • Friedman, C.1
  • 19
    • 0032445532 scopus 로고    scopus 로고
    • The distinction between linguistic and conceptual semantics in medical terminology and its implication for NLP-based knowledge acquisition
    • Ceusters W, Buekens F, De Moor G, et al. The distinction between linguistic and conceptual semantics in medical terminology and its implication for NLP-based knowledge acquisition. Methods Inf Med 1998;37:327-33.
    • (1998) Methods Inf Med , vol.37 , pp. 327-333
    • Ceusters, W.1    Buekens, F.2    De Moor, G.3
  • 20
    • 0035748016 scopus 로고    scopus 로고
    • Comparing syntactic complexity in medical and non-medical corpora
    • Campbell DA, Johnson SB. Comparing syntactic complexity in medical and non-medical corpora. Proceedings of AMIA Symposium; 2001:90-4.
    • (2001) Proceedings of AMIA Symposium , pp. 90-94
    • Campbell, D.A.1    Johnson, S.B.2
  • 21
    • 28744437703 scopus 로고    scopus 로고
    • Domain-specific language models and lexicons for tagging
    • Coden AR, Pakhomov SV, Ando RK, et al. Domain-specific language models and lexicons for tagging. J Biomed Inform 2005;38:422-30.
    • (2005) J Biomed Inform , vol.38 , pp. 422-430
    • Coden, A.R.1    Pakhomov, S.V.2    Ando, R.K.3
  • 23
    • 85122620960 scopus 로고    scopus 로고
    • Enriching the knowledge sources used in a maximum entropy part-of-speech tagger
    • Toutanova K, Manning CD. Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. Joint Sigdat Conference on EMNLP/VLC; 2000:63-70.
    • (2000) Joint Sigdat Conference on EMNLP/VLC , pp. 63-70
    • Toutanova, K.1    Manning, C.D.2
  • 24
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network
    • Toutanova K, Klein D, Manning CD, et al. Feature-rich part-of-speech tagging with a cyclic dependency network. Proceedings of of HLT-NAACL; 2003:252-9.
    • (2003) Proceedings of of HLT-NAACL , pp. 252-259
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3
  • 25
    • 84860520429 scopus 로고    scopus 로고
    • Guided learning for bidirectional sequence classification
    • Shen L, Satta G, Joshi A. Guided learning for bidirectional sequence classification. Proceedings of ACL; 2007;45:760-7.
    • (2007) Proceedings of ACL , vol.45 , pp. 760-767
    • Shen, L.1    Satta, G.2    Joshi, A.3
  • 26
    • 84860001644 scopus 로고    scopus 로고
    • Simple semi-supervised training of part-of-speech taggers
    • Søgaard A. Simple semi-supervised training of part-of-speech taggers. Proceedings of ACL; 2010:205-8.
    • (2010) Proceedings of ACL , pp. 205-208
    • Søgaard, A.1
  • 27
    • 84882768244 scopus 로고    scopus 로고
    • Wikipedia: POS tagging (state of the art) (accessed 2 Apr 2012).
    • Wikipedia: POS tagging (state of the art). http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art) (accessed 2 Apr 2012).
  • 28
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: the Penn Treebank
    • Marcus MP, Marcinkiewicz MA, Santorini B. Building a large annotated corpus of English: the Penn Treebank. Comput Linguist 1993;19:313-30.
    • (1993) Comput Linguist , vol.19 , pp. 313-330
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 29
    • 84882769538 scopus 로고    scopus 로고
    • OpenNLP part-of-speech tagger (accessed 2 Apr 2012).
    • Baldridge J, Morton T, Bierner G. OpenNLP part-of-speech tagger. http://opennlp.apache.org/ (accessed 2 Apr 2012).
    • Baldridge, J.1    Morton, T.2    Bierner, G.3
  • 30
    • 85124016637 scopus 로고    scopus 로고
    • A maximum entropy model for part-of-speech tagging
    • Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. Proceedings of EMNLP; 1996;1:133-42.
    • (1996) Proceedings of EMNLP , vol.1 , pp. 133-142
    • Ratnaparkhi, A.1
  • 31
    • 84974825732 scopus 로고    scopus 로고
    • Learning based java for rapid development of nlp systems
    • Rizzolo N, Roth D. Learning based java for rapid development of nlp systems. Proceedings of LREC; 2010:958-64.
    • (2010) Proceedings of LREC , pp. 958-964
    • Rizzolo, N.1    Roth, D.2
  • 33
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm
    • Littlestone N. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Machine Learning 1988;2:285-318.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 35
    • 84882770056 scopus 로고    scopus 로고
    • LingPipe 4.1.0.(accessed 2 Apr 2012).
    • LingPipe 4.1.0. http://alias-i.com/lingpipe (accessed 2 Apr 2012).
  • 36
    • 4944229711 scopus 로고    scopus 로고
    • GENIA corpus-a semantically annotated corpus for bio-textmining
    • Kim JD, Ohta T, Tateisi Y, et al. GENIA corpus-a semantically annotated corpus for bio-textmining. Bioinformatics 2003;19(Suppl. 1):i180-2.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Kim, J.D.1    Ohta, T.2    Tateisi, Y.3
  • 37
    • 5044241106 scopus 로고    scopus 로고
    • MedPost: a part-of-speech tagger for bioMedical text
    • Smith L, Rindflesch T, Wilbur WJ. MedPost: a part-of-speech tagger for bioMedical text. Bioinformatics 2004;20:2320-1.
    • (2004) Bioinformatics , vol.20 , pp. 2320-2321
    • Smith, L.1    Rindflesch, T.2    Wilbur, W.J.3
  • 40
    • 84867919822 scopus 로고
    • Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging
    • Brill E. Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging. Comput Linguist; 1995;21:543-65.
    • (1995) Comput Linguist , vol.21 , pp. 543-565
    • Brill, E.1
  • 41
    • 33646159049 scopus 로고    scopus 로고
    • Developing a corpus of clinical notes manually annotated for part-of-speech
    • Pakhomov SV, Coden A, Chute CG. Developing a corpus of clinical notes manually annotated for part-of-speech. Int J Med Inform 2006;75:418-29.
    • (2006) Int J Med Inform , vol.75 , pp. 418-429
    • Pakhomov, S.V.1    Coden, A.2    Chute, C.G.3
  • 42
    • 0003332498 scopus 로고    scopus 로고
    • TnT: a statistical part-of-speech tagger
    • Brants T. TnT: a statistical part-of-speech tagger. Proceedings of ANLP; 2000:224-31.
    • (2000) Proceedings of ANLP , pp. 224-231
    • Brants, T.1
  • 43
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010;17:507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 44
    • 84873873123 scopus 로고    scopus 로고
    • Part-of-speech tagging for clinical text: wall or bridge between institutions?
    • Fan J, Prasad R, Yabut RM, et al. Part-of-speech tagging for clinical text: wall or bridge between institutions? AMIA Annual Symposium Proceedings 2011:382-91.
    • (2011) AMIA Annual Symposium Proceedings , pp. 382-391
    • Fan, J.1    Prasad, R.2    Yabut, R.M.3
  • 45
    • 34548505264 scopus 로고    scopus 로고
    • Heuristic sample selection to minimize reference standard training set for a part-of-speech tagger
    • Liu K, Chapman W, Hwa R, et al. Heuristic sample selection to minimize reference standard training set for a part-of-speech tagger. J Am Med Inform Assoc 2007;14:641-50.
    • (2007) J Am Med Inform Assoc , vol.14 , pp. 641-650
    • Liu, K.1    Chapman, W.2    Hwa, R.3
  • 46
    • 25844460429 scopus 로고    scopus 로고
    • Sample selection for statistical parsing
    • Hwa R. Sample selection for statistical parsing. Comput Linguis 2004;30:253-76.
    • (2004) Comput Linguis , vol.30 , pp. 253-276
    • Hwa, R.1
  • 47
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. Proceedings of EMNLP; 2006:120-8.
    • (2006) Proceedings of EMNLP , pp. 120-128
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 49
    • 34548826261 scopus 로고    scopus 로고
    • The specialist lexicon. Bethesda, MD: Lister Hill National Center for Biomedical Communications,
    • NLM Technical Report NLM-LHC-93-01
    • Browne AC, McCray AT, Srinivasan S. The specialist lexicon. Bethesda, MD: Lister Hill National Center for Biomedical Communications, National Library of Medicine; 2000:18-21, NLM Technical Report NLM-LHC-93-01.
    • (2000) National Library of Medicine , pp. 18-21
    • Browne, A.C.1    McCray, A.T.2    Srinivasan, S.3
  • 50
    • 3343019470 scopus 로고
    • Measuring nominal scale agreement among many raters
    • Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull 1971;76:378-82.
    • (1971) Psychol Bull , vol.76 , pp. 378-382
    • Fleiss, J.L.1
  • 51
    • 84882762480 scopus 로고    scopus 로고
    • Biomedical Language Understanding (BLU) Lab-University of Pittsburgh. Pittsburgh, PA(accessed 7 Jul 2012).
    • Biomedical Language Understanding (BLU) Lab-University of Pittsburgh. Pittsburgh, PA; http://www.dbmi.pitt.edu/blulab/index.html (accessed 7 Jul 2012).
  • 52
    • 0000324478 scopus 로고
    • The Medical Archival System: an information retrieval system based on distributed parallel processing
    • Yount RJ, Vries JK, Councill CD. The Medical Archival System: an information retrieval system based on distributed parallel processing. Inf Process Manage 1991;27:379-89.
    • (1991) Inf Process Manage , vol.27 , pp. 379-389
    • Yount, R.J.1    Vries, J.K.2    Councill, C.D.3
  • 54
    • 84882758056 scopus 로고    scopus 로고
    • World of computing. Articles on natural language processing: transformation based learning(accessed 7 Jul 2012).
    • World of computing. Articles on natural language processing: transformation based learning. http://language.worldofcomputing.net/pos-tagging/transformation-basedlearning.html# (accessed 7 Jul 2012).
  • 57
    • 85050168994 scopus 로고    scopus 로고
    • A life of language
    • Kay M. A life of language. Computat Linguist 2005;31:425-38.
    • (2005) Computat Linguist , vol.31 , pp. 425-438
    • Kay, M.1
  • 58
    • 85120618233 scopus 로고    scopus 로고
    • Transformation-based learning in the fast lane
    • Ngai G, Florian R. Transformation-based learning in the fast lane. Proceedings of NAACL; 2001:40-7.
    • (2001) Proceedings of NAACL , pp. 40-47
    • Ngai, G.1    Florian, R.2
  • 59
    • 84937338386 scopus 로고    scopus 로고
    • Randomized rule selection in transformation-based learning: a comparative study
    • Carberry S, Vijay-Shanker K, Wilson A, et al. Randomized rule selection in transformation-based learning: a comparative study. Nat Lang Eng 2001;7:99-116.
    • (2001) Nat Lang Eng , vol.7 , pp. 99-116
    • Carberry, S.1    Vijay-Shanker, K.2    Wilson, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.