메뉴 건너뛰기




Volumn 121, Issue , 2013, Pages 224-232

A necessary test for complete independence in high dimensions using rank-correlations

Author keywords

Asymptotic normality; Complete independence; High dimensional problem; Necessary tests; Spearman's rank correlation

Indexed keywords


EID: 84882695031     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2013.05.014     Document Type: Article
Times cited : (9)

References (12)
  • 1
    • 2142645905 scopus 로고    scopus 로고
    • Effect of high dimension: by an example of a two sample problem
    • Bai Z.D., Saranadasa H. Effect of high dimension: by an example of a two sample problem. Statist. Sinica 1996, 6:311-329.
    • (1996) Statist. Sinica , vol.6 , pp. 311-329
    • Bai, Z.D.1    Saranadasa, H.2
  • 2
    • 77649330805 scopus 로고    scopus 로고
    • A two-sample test for high-dimensional data with applications to gene-set testing
    • Chen S.X., Qin Y.L. A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Statist. 2010, 38:808-835.
    • (2010) Ann. Statist. , vol.38 , pp. 808-835
    • Chen, S.X.1    Qin, Y.L.2
  • 3
    • 0043007176 scopus 로고
    • Some questions of distribution in the theory of rank correlation
    • David S.T., Kendall M.G., Stuart A. Some questions of distribution in the theory of rank correlation. Biometrika 1951, 38:131-140.
    • (1951) Biometrika , vol.38 , pp. 131-140
    • David, S.T.1    Kendall, M.G.2    Stuart, A.3
  • 4
    • 13244295991 scopus 로고    scopus 로고
    • Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency
    • Fan J.Q., Peng H., Huang T. Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency. J. Amer. Statist. Assoc. 2005, 100:781-796.
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 781-796
    • Fan, J.Q.1    Peng, H.2    Huang, T.3
  • 6
    • 0036392431 scopus 로고    scopus 로고
    • Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size
    • Ledoit O., Wolf M. Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Statist. 2002, 30:1081-1102.
    • (2002) Ann. Statist. , vol.30 , pp. 1081-1102
    • Ledoit, O.1    Wolf, M.2
  • 8
    • 27944479075 scopus 로고    scopus 로고
    • Testing for complete independence in high dimensions
    • Schott J.R. Testing for complete independence in high dimensions. Biometrika 2005, 92:951-956.
    • (2005) Biometrika , vol.92 , pp. 951-956
    • Schott, J.R.1
  • 9
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • Spearman C. The proof and measurement of association between two things. Amer. J. Psychol. 1904, 15:72-101.
    • (1904) Amer. J. Psychol. , vol.15 , pp. 72-101
    • Spearman, C.1
  • 10
    • 33748417779 scopus 로고    scopus 로고
    • Some tests concerning the covariance matrix in high-dimensional data
    • Srivastava M.S. Some tests concerning the covariance matrix in high-dimensional data. J. Japan Statist. Soc. 2005, 35:251-272.
    • (2005) J. Japan Statist. Soc. , vol.35 , pp. 251-272
    • Srivastava, M.S.1
  • 11
    • 54049154435 scopus 로고    scopus 로고
    • Some tests criteria for the covariance matrix with fewer observations than the dimension
    • Srivastava M.S. Some tests criteria for the covariance matrix with fewer observations than the dimension. Acta Comment. Univ. Tartu. Math. 2006, 10:77-93.
    • (2006) Acta Comment. Univ. Tartu. Math. , vol.10 , pp. 77-93
    • Srivastava, M.S.1
  • 12
    • 79954642379 scopus 로고    scopus 로고
    • Some tests for the covariance matrix with fewer observations than the dimension under nonnormality
    • Srivastava M.S., Kollo T., von Rosen D. Some tests for the covariance matrix with fewer observations than the dimension under nonnormality. J. Multivariate Anal. 2011, 102:1090-1103.
    • (2011) J. Multivariate Anal. , vol.102 , pp. 1090-1103
    • Srivastava, M.S.1    Kollo, T.2    von Rosen, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.