메뉴 건너뛰기




Volumn 22, Issue 5, 2013, Pages 559-565

Regulation of potassium channel trafficking in the distal nephron

Author keywords

AP clathrin adaptor; BK; clathrin; Kir channel; PDZ protein; ROMK

Indexed keywords

CLATHRIN; COAT PROTEIN; GUANINE NUCLEOTIDE BINDING PROTEIN; INWARDLY RECTIFYING POTASSIUM CHANNEL SUBUNIT KIR2.1; KIR2.2 CHANNEL; KIR2.3 CHANNEL; KIR4.1 CHANNEL; KIR5.1 CHANNEL; LARGE CONDUCTANCE CALCIUM ACTIVATED POTASSIUM CHANNEL; LOW DENSITY LIPOPROTEIN; PDZ PROTEIN; POTASSIUM CHANNEL; UNCLASSIFIED DRUG; VIRUS PROTEIN;

EID: 84882450234     PISSN: 10624821     EISSN: 14736543     Source Type: Journal    
DOI: 10.1097/MNH.0b013e328363ff76     Document Type: Review
Times cited : (11)

References (51)
  • 1
    • 70349649788 scopus 로고    scopus 로고
    • A comprehensive guide to the ROMK potassium channel: Form and function in health and disease
    • Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297:F849-F863.
    • (2009) Am J Physiol Renal Physiol , vol.297
    • Welling, P.A.1    Ho, K.2
  • 2
    • 0024552339 scopus 로고
    • Low-conductance K channels in apical membrane of rat cortical collecting tubule
    • Frindt G, Palmer LG. Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol 1989; 256:F143-F151.
    • (1989) Am J Physiol , vol.256
    • Frindt, G.1    Palmer, L.G.2
  • 3
    • 0025004668 scopus 로고
    • Regulation of small-conductance K channel in apical membrane of rat cortical collecting tubule
    • Wang W, Schwab A, Giebisch G. Regulation of small-conductance K channel in apical membrane of rat cortical collecting tubule. Am J Physiol 1990; 259:F494-F502.
    • (1990) Am J Physiol , vol.259
    • Wang, W.1    Schwab, A.2    Giebisch, G.3
  • 5
    • 0030726186 scopus 로고    scopus 로고
    • Primary structure and functional expression of a cortical collecting duct Kir channel
    • Welling PA. Primary structure and functional expression of a cortical collecting duct Kir channel. Am J Physiol 1997; 273:F825-F836.
    • (1997) Am J Physiol , vol.273
    • Welling, P.A.1
  • 6
    • 48249086930 scopus 로고    scopus 로고
    • Kir4.1/Kir5.1 channel forms the major K\+ channel in the basolateral membrane of mouse renal collecting duct principal cells
    • Lachheb S, Cluzeaud F, Bens M, et al. Kir4.1/Kir5.1 channel forms the major K\+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 2008; 294:F1398-F1407.
    • (2008) Am J Physiol Renal Physiol , vol.294
    • Lachheb, S.1    Cluzeaud, F.2    Bens, M.3
  • 7
    • 79960003832 scopus 로고    scopus 로고
    • Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K\+ channel subunit contrasts with that observed in SeSAME/EAST syndrome
    • Paulais M, Bloch-Faure M, Picard N, et al. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K\+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc Natl Acad Sci USA 2011; 108:10361-10366.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 10361-10366
    • Paulais, M.1    Bloch-Faure, M.2    Picard, N.3
  • 8
    • 65649112786 scopus 로고    scopus 로고
    • Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations
    • Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 2009; 360:1960-1970.
    • (2009) N Engl J Med , vol.360 , pp. 1960-1970
    • Bockenhauer, D.1    Feather, S.2    Stanescu, H.C.3
  • 9
    • 65249156553 scopus 로고    scopus 로고
    • Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10
    • Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 2009; 106:5842-5847.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 5842-5847
    • Scholl, U.I.1    Choi, M.2    Liu, T.3
  • 10
    • 0036076755 scopus 로고    scopus 로고
    • Basolateral membrane expression of the Kir 2.3 channel is coordinated by PDZ interaction with Lin-7/CASK complex
    • Olsen O, Liu H, Wade JB, et al. Basolateral membrane expression of the Kir 2.3 channel is coordinated by PDZ interaction with Lin-7/CASK complex. Am J Physiol Cell Physiol 2002; 282:C183-C195.
    • (2002) Am J Physiol Cell Physiol , vol.282
    • Olsen, O.1    Liu, H.2    Wade, J.B.3
  • 11
    • 0035964402 scopus 로고    scopus 로고
    • Basolateral membrane expression of a K\+ channel, Kir 2.3, is directed by a cytoplasmic COOH-terminal domain
    • Le Maout S, Welling PA, Brejon M, et al. Basolateral membrane expression of a K\+ channel, Kir 2.3, is directed by a cytoplasmic COOH-terminal domain. Proc Natl Acad Sci USA 2001; 98:10475-10480.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 10475-10480
    • Le Maout, S.1    Welling, P.A.2    Brejon, M.3
  • 12
    • 67749145291 scopus 로고    scopus 로고
    • Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells
    • Farr GA, Hull M, Mellman I, Caplan MJ. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. J Cell Biol 2009; 186:269-282.
    • (2009) J Cell Biol , vol.186 , pp. 269-282
    • Farr, G.A.1    Hull, M.2    Mellman, I.3    Caplan, M.J.4
  • 13
    • 42049101203 scopus 로고    scopus 로고
    • Clathrin is a key regulator of basolateral polarity
    • Deborde S, Perret E, Gravotta D, et al. Clathrin is a key regulator of basolateral polarity. Nature 2008; 452:719-723.
    • (2008) Nature , vol.452 , pp. 719-723
    • Deborde, S.1    Perret, E.2    Gravotta, D.3
  • 14
    • 79959668938 scopus 로고    scopus 로고
    • Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure
    • Ma D, Taneja TK, Hagen BM, et al. Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 2011; 145:1102-1115.
    • (2011) Cell , vol.145 , pp. 1102-1115
    • Ma, D.1    Taneja, T.K.2    Hagen, B.M.3
  • 15
    • 33846785478 scopus 로고    scopus 로고
    • AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells
    • Gravotta D, Deora A, Perret E, et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc Natl Acad Sci USA 2007; 104:1564-1569.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1564-1569
    • Gravotta, D.1    Deora, A.2    Perret, E.3
  • 16
    • 84865975034 scopus 로고    scopus 로고
    • Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons
    • Farias GG, Cuitino L, Guo X, et al. Signal-mediated, AP-1/clathrin- dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 2012; 75:810-823.
    • (2012) Neuron , vol.75 , pp. 810-823
    • Farias, G.G.1    Cuitino, L.2    Guo, X.3
  • 17
    • 84859817368 scopus 로고    scopus 로고
    • The clathrin adaptor AP-1A mediates basolateral polarity
    • Gravotta D, Carvajal-Gonzalez JM, Mattera R, et al. The clathrin adaptor AP-1A mediates basolateral polarity. Dev Cell 2012; 22:811-823.
    • (2012) Dev Cell , vol.22 , pp. 811-823
    • Gravotta, D.1    Carvajal-Gonzalez, J.M.2    Mattera, R.3
  • 18
    • 84870576679 scopus 로고    scopus 로고
    • Role of membrane traffic in the generation of epithelial cell asymmetry
    • Apodaca G, Gallo LI, Bryant DM. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat Cell Biol 2012; 14:1235-1243.
    • (2012) Nat Cell Biol , vol.14 , pp. 1235-1243
    • Apodaca, G.1    Gallo, L.I.2    Bryant, D.M.3
  • 19
    • 1942486860 scopus 로고    scopus 로고
    • The C-terminal tail of the GAT-2 GABA transporter contains a novel motif that plays a role in basolateral targeting
    • Brown A, Muth T, Caplan M. The C-terminal tail of the GAT-2 GABA transporter contains a novel motif that plays a role in basolateral targeting. Am J Physiol Cell Physiol 2004; 286:C1071-C1077.
    • (2004) Am J Physiol Cell Physiol , vol.286
    • Brown, A.1    Muth, T.2    Caplan, M.3
  • 20
    • 33644806107 scopus 로고    scopus 로고
    • PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells
    • Tanemoto M, Abe T, Ito S. PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells. J Am Soc Nephrol 2005; 16:2608-2614.
    • (2005) J Am Soc Nephrol , vol.16 , pp. 2608-2614
    • Tanemoto, M.1    Abe, T.2    Ito, S.3
  • 21
    • 8644256806 scopus 로고    scopus 로고
    • PDZ binding motif-dependent localization of K\+ channel on the basolateral side in distal tubules
    • Tanemoto M, Abe T, Onogawa T, Ito S. PDZ binding motif-dependent localization of K\+ channel on the basolateral side in distal tubules. Am J Physiol Renal Physiol 2004; 287:F1148-F1153.
    • (2004) Am J Physiol Renal Physiol , vol.287
    • Tanemoto, M.1    Abe, T.2    Onogawa, T.3    Ito, S.4
  • 23
    • 45549109670 scopus 로고    scopus 로고
    • MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K\+ channels
    • Tanemoto M, Toyohara T, Abe T, Ito S. MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K\+ channels. J Biol Chem 2008; 283:12241-12247.
    • (2008) J Biol Chem , vol.283 , pp. 12241-12247
    • Tanemoto, M.1    Toyohara, T.2    Abe, T.3    Ito, S.4
  • 24
    • 2542470459 scopus 로고    scopus 로고
    • Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.X)-associated proteins
    • Leonoudakis D, Conti LR, Anderson S, et al. Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem 2004; 279:22331-22346.
    • (2004) J Biol Chem , vol.279 , pp. 22331-22346
    • Leonoudakis, D.1    Conti, L.R.2    Anderson, S.3
  • 25
    • 3142580944 scopus 로고    scopus 로고
    • The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia
    • Connors NC, Adams ME, Froehner SC, Kofuji P. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 2004; 279:28387-28392.
    • (2004) J Biol Chem , vol.279 , pp. 28387-28392
    • Connors, N.C.1    Adams, M.E.2    Froehner, S.C.3    Kofuji, P.4
  • 26
    • 67650654404 scopus 로고    scopus 로고
    • MUPP1 complexes renal K\+ channels to alter cell surface expression and whole cell currents
    • Sindic A, Huang C, Chen AP, et al. MUPP1 complexes renal K\+ channels to alter cell surface expression and whole cell currents. Am J Physiol Renal Physiol 2009; 297:F36-F45.
    • (2009) Am J Physiol Renal Physiol , vol.297
    • Sindic, A.1    Huang, C.2    Chen, A.P.3
  • 27
    • 37149056390 scopus 로고    scopus 로고
    • Lin-7 targets the Kir 2.3 channel on the basolateral membrane via a L27 domain interaction with CASK
    • Alewine C, Kim BY, Hegde V, Welling PA. Lin-7 targets the Kir 2.3 channel on the basolateral membrane via a L27 domain interaction with CASK. Am J Physiol Cell Physiol 2007; 293:C1733-C1741.
    • (2007) Am J Physiol Cell Physiol , vol.293
    • Alewine, C.1    Kim, B.Y.2    Hegde, V.3    Welling, P.A.4
  • 28
    • 79954546158 scopus 로고    scopus 로고
    • Protein complexes that control renal epithelial polarity
    • Pieczynski J, Margolis B. Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol 2011; 300:F589-F601.
    • (2011) Am J Physiol Renal Physiol , vol.300
    • Pieczynski, J.1    Margolis, B.2
  • 29
    • 33845993619 scopus 로고    scopus 로고
    • Mammalian lin-7 stabilizes polarity protein complexes
    • Straight SW, Pieczynski JN, Whiteman EL, et al. Mammalian lin-7 stabilizes polarity protein complexes. J Biol Chem 2006; 281:37738-37747.
    • (2006) J Biol Chem , vol.281 , pp. 37738-37747
    • Straight, S.W.1    Pieczynski, J.N.2    Whiteman, E.L.3
  • 30
    • 0036179747 scopus 로고    scopus 로고
    • A novel and conserved protein-protein interaction domain of mammalian Lin-2/CASK binds and recruits SAP97 to the lateral surface of epithelia
    • Lee S, Fan S, Makarova O, et al. A novel and conserved protein-protein interaction domain of mammalian Lin-2/CASK binds and recruits SAP97 to the lateral surface of epithelia. Mol Cell Biol 2002; 22:1778-1791.
    • (2002) Mol Cell Biol , vol.22 , pp. 1778-1791
    • Lee, S.1    Fan, S.2    Makarova, O.3
  • 31
    • 0032514259 scopus 로고    scopus 로고
    • Human CASK/LIN-2 binds syndecan-2 and protein 4. 1 and localizes to the basolateral membrane of epithelial cells
    • Cohen AR, Woods DF, Marfatia SM, et al. Human CASK/LIN-2 binds syndecan-2 and protein 4. 1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol 1998; 142:129-138.
    • (1998) J Cell Biol , vol.142 , pp. 129-138
    • Cohen, A.R.1    Woods, D.F.2    Marfatia, S.M.3
  • 32
    • 70450128390 scopus 로고    scopus 로고
    • Apical trafficking in epithelial cells: Signals, clusters and motors
    • Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2009; 122:4253-4266.
    • (2009) J Cell Sci , vol.122 , pp. 4253-4266
    • Weisz, O.A.1    Rodriguez-Boulan, E.2
  • 33
    • 78751528090 scopus 로고    scopus 로고
    • Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function
    • Renigunta A, Renigunta V, Saritas T, et al. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J Biol Chem 2011; 286:2224-2235.
    • (2011) J Biol Chem , vol.286 , pp. 2224-2235
    • Renigunta, A.1    Renigunta, V.2    Saritas, T.3
  • 34
    • 0034700121 scopus 로고    scopus 로고
    • Apical sorting of a voltageand Ca2\+-activated K\+ channel alpha-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation
    • Bravo-Zehnder M, Orio P, Norambuena A, et al. Apical sorting of a voltageand Ca2\+-activated K\+ channel alpha-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation. Proc Natl Acad Sci USA 2000; 97:13114-13119.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 13114-13119
    • Bravo-Zehnder, M.1    Orio, P.2    Norambuena, A.3
  • 35
    • 6344266857 scopus 로고    scopus 로고
    • Multiple sequences in the C terminus of MaxiK channels are involved in expression, movement to the cell surface, and apical localization
    • Kwon SH, Guggino WB. Multiple sequences in the C terminus of MaxiK channels are involved in expression, movement to the cell surface, and apical localization. Proc Natl Acad Sci USA 2004; 101:15237-15242.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 15237-15242
    • Kwon, S.H.1    Guggino, W.B.2
  • 36
    • 0031831767 scopus 로고    scopus 로고
    • Renal potassium transport: Mechanisms and regulation
    • Giebisch G. Renal potassium transport: mechanisms and regulation. Am J Physiol 1998; 274:F817-F833.
    • (1998) Am J Physiol , vol.274
    • Giebisch, G.1
  • 37
    • 79958117101 scopus 로고    scopus 로고
    • Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium
    • Wade JB, Fang L, Coleman RA, et al. Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am J Physiol Renal Physiol 2011; 300:F1385-F1393.
    • (2011) Am J Physiol Renal Physiol , vol.300
    • Wade, J.B.1    Fang, L.2    Coleman, R.A.3
  • 38
    • 70350719352 scopus 로고    scopus 로고
    • Surface expression of sodium channels and transporters in rat kidney: Effects of dietary sodium
    • Frindt G, Palmer LG. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am J Physiol Renal Physiol 2009; 297:F1249-F1255.
    • (2009) Am J Physiol Renal Physiol , vol.297
    • Frindt, G.1    Palmer, L.G.2
  • 39
    • 27444446950 scopus 로고    scopus 로고
    • A phosphorylation-dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal
    • Yoo D, Fang L, Mason A, et al. A phosphorylation-dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal. J Biol Chem 2005; 280:35281-35289.
    • (2005) J Biol Chem , vol.280 , pp. 35281-35289
    • Yoo, D.1    Fang, L.2    Mason, A.3
  • 40
    • 22244447134 scopus 로고    scopus 로고
    • Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K\+ channel (ROMK)
    • O'Connell AD, Leng Q, Dong K, et al. Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K\+ channel (ROMK). Proc Natl Acad Sci USA 2005; 102:9954-9959.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 9954-9959
    • O'Connell, A.D.1    Leng, Q.2    Dong, K.3
  • 41
    • 61649122140 scopus 로고    scopus 로고
    • Intracellular traffic of the K\+ channels TASK-1 and TASK-3: Role of N-and C-terminal sorting signals and interaction with 14-3-3 proteins
    • Zuzarte M, Heusser K, Renigunta V, et al. Intracellular traffic of the K\+ channels TASK-1 and TASK-3: role of N-and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 2009; 587:929-952.
    • (2009) J Physiol , vol.587 , pp. 929-952
    • Zuzarte, M.1    Heusser, K.2    Renigunta, V.3
  • 42
    • 0037112329 scopus 로고    scopus 로고
    • Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals
    • O'Kelly I, Butler MH, Zilberberg N, Goldstein SA. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 2002; 111:577-588.
    • (2002) Cell , vol.111 , pp. 577-588
    • O'Kelly, I.1    Butler, M.H.2    Zilberberg, N.3    Goldstein, S.A.4
  • 43
    • 0038786618 scopus 로고    scopus 로고
    • Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A
    • Yoo D, Kim BY, Campo C, et al. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 2003; 278:23066-23075.
    • (2003) J Biol Chem , vol.278 , pp. 23066-23075
    • Yoo, D.1    Kim, B.Y.2    Campo, C.3
  • 44
    • 0036783531 scopus 로고    scopus 로고
    • Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles
    • Zeng WZ, Babich V, Ortega B, et al. Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol 2002; 283:F630-F669.
    • (2002) Am J Physiol Renal Physiol , vol.283
    • Zeng, W.Z.1    Babich, V.2    Ortega, B.3
  • 45
    • 0242665709 scopus 로고    scopus 로고
    • Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct
    • Chu PY, Quigley R, Babich V, Huang CL. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct. Am J Physiol 2003; 285:F1179-F1187.
    • (2003) Am J Physiol , vol.285
    • Chu, P.Y.1    Quigley, R.2    Babich, V.3    Huang, C.L.4
  • 46
    • 0037040273 scopus 로고    scopus 로고
    • Inhibition of protein tyrosine phosphatase stimulates the dynamin-dependent endocytosis of ROMK1
    • Sterling H, Lin DH, Gu RM, et al. Inhibition of protein tyrosine phosphatase stimulates the dynamin-dependent endocytosis of ROMK1. J Biol Chem 2002; 277:4317-4323.
    • (2002) J Biol Chem , vol.277 , pp. 4317-4323
    • Sterling, H.1    Lin, D.H.2    Gu, R.M.3
  • 47
    • 70449358501 scopus 로고    scopus 로고
    • The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney
    • Fang L, Garuti R, Kim BY, et al. The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J Clin Invest 2009; 119:3278-3289.
    • (2009) J Clin Invest , vol.119 , pp. 3278-3289
    • Fang, L.1    Garuti, R.2    Kim, B.Y.3
  • 48
    • 77955359609 scopus 로고    scopus 로고
    • Multigene kinase network, kidney transport, and salt in essential hypertension
    • Welling PA, Chang YP, Delpire E, Wade JB. Multigene kinase network, kidney transport, and salt in essential hypertension. Kidney Int 2010; 77:1063-1069.
    • (2010) Kidney Int , vol.77 , pp. 1063-1069
    • Welling, P.A.1    Chang, Y.P.2    Delpire, E.3    Wade, J.B.4
  • 49
    • 0025250145 scopus 로고
    • NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor
    • Chen WJ, Goldstein JL, Brown MS. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 1990; 265:3116-3123.
    • (1990) J Biol Chem , vol.265 , pp. 3116-3123
    • Chen, W.J.1    Goldstein, J.L.2    Brown, M.S.3
  • 50
    • 0023664118 scopus 로고
    • The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis
    • Davis CG, van Driel IR, Russell DW, et al. The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J Biol Chem 1987; 262:4075-4082.
    • (1987) J Biol Chem , vol.262 , pp. 4075-4082
    • Davis, C.G.1    Van Driel, I.R.2    Russell, D.W.3
  • 51
    • 33947311208 scopus 로고    scopus 로고
    • Decoding ubiquitin sorting signals for clathrindependent endocytosis by CLASPs
    • Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrindependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-553.
    • (2007) J Cell Sci , vol.120 , pp. 543-553
    • Traub, L.M.1    Lukacs, G.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.