메뉴 건너뛰기




Volumn 64, Issue 11, 2013, Pages 3169-3178

Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency

Author keywords

Arabidopsis thaliana; ascorbic acid; chlorosis; glutathione; iron deficiency; reactive oxygen species.

Indexed keywords

ASCORBIC ACID; GLUTATHIONE; IRON; REACTIVE NITROGEN SPECIES;

EID: 84882292975     PISSN: 00220957     EISSN: 14602431     Source Type: Journal    
DOI: 10.1093/jxb/ert153     Document Type: Article
Times cited : (84)

References (40)
  • 1
    • 0029138945 scopus 로고
    • Dissection of oxidative stress tolerance using transgenic plants
    • Allen RD. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology 107, 1049-1054.
    • (1995) Plant Physiology , vol.107 , pp. 1049-1054
    • Allen, R.D.1
  • 2
    • 0001844190 scopus 로고
    • Copper enzymes in isolated chloroplasts: Phenol oxidase in Beta vulgaris
    • Arnon DI. 1949. Copper enzymes in isolated chloroplasts: phenol oxidase in Beta vulgaris. Plant Physiology 24, 1-15.
    • (1949) Plant Physiology , vol.24 , pp. 1-15
    • Arnon, D.I.1
  • 3
    • 0023858197 scopus 로고
    • The discovery of ferredoxin: The photosynthetic path
    • Arnon DI. 1988. The discovery of ferredoxin: the photosynthetic path. Trends in Biochemical Sciences 13, 30-33.
    • (1988) Trends in Biochemical Sciences , vol.13 , pp. 30-33
    • Arnon, D.I.1
  • 4
    • 61549109247 scopus 로고    scopus 로고
    • Ascorbic acid-important for iron metabolism
    • Atanassova BD, Tzatchev KN. 2008. Ascorbic acid-important for iron metabolism. Folia Medica 50, 11-6.
    • (2008) Folia Medica , vol.50 , pp. 11-16
    • Atanassova, B.D.1    Tzatchev, K.N.2
  • 5
    • 41949108097 scopus 로고    scopus 로고
    • Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters
    • Bandyopadhyay S, Gama F, Molina-Navarro MM, et al. 2008. Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. EMBO Journal 27, 1122-33.
    • (2008) EMBO Journal , vol.27 , pp. 1122-1133
    • Bandyopadhyay, S.1    Gama, F.2    Molina-Navarro, M.M.3
  • 6
    • 33745630643 scopus 로고    scopus 로고
    • Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves
    • Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH. 2006. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. Journal of Experimental Botany 57, 1621-1631.
    • (2006) Journal of Experimental Botany , vol.57 , pp. 1621-1631
    • Bartoli, C.G.1    Yu, J.2    Gómez, F.3    Fernández, L.4    McIntosh, L.5    Foyer, C.H.6
  • 9
    • 84855294330 scopus 로고    scopus 로고
    • Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid
    • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP. 2012. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology 158, 340-51.
    • (2012) Plant Physiology , vol.158 , pp. 340-351
    • Chen, J.H.1    Jiang, H.W.2    Hsieh, E.J.3    Chen, H.Y.4    Chien, C.T.5    Hsieh, H.L.6    Lin, T.P.7
  • 10
    • 35848959715 scopus 로고    scopus 로고
    • Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability
    • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. 2007. Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal 52, 673-689.
    • (2007) The Plant Journal , vol.52 , pp. 673-689
    • Dowdle, J.1    Ishikawa, T.2    Gatzek, S.3    Rolinski, S.4    Smirnoff, N.5
  • 12
    • 60749136076 scopus 로고    scopus 로고
    • Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications
    • Foyer CH, Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11, 861-905.
    • (2009) Antioxidants & Redox Signaling , vol.11 , pp. 861-905
    • Foyer, C.H.1    Noctor, G.2
  • 13
    • 78650988662 scopus 로고    scopus 로고
    • Ascorbate and glutathione: The heart of the redox hub
    • Foyer CH, Noctor G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155, 2-18.
    • (2011) Plant Physiology , vol.155 , pp. 2-18
    • Foyer, C.H.1    Noctor, G.2
  • 14
    • 11844296696 scopus 로고    scopus 로고
    • Nitric oxide and iron in plants: An emerging and converging story
    • Graziano M, Lamattina L. 2005. Nitric oxide and iron in plants: an emerging and converging story. Trends in Plant Science 10, 4-8.
    • (2005) Trends in Plant Science , vol.10 , pp. 4-8
    • Graziano, M.1    Lamattina, L.2
  • 15
    • 0019167355 scopus 로고
    • Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine
    • Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry 106, 207-212.
    • (1980) Analytical Biochemistry , vol.106 , pp. 207-212
    • Griffith, O.W.1
  • 17
    • 83555173402 scopus 로고    scopus 로고
    • Glutathione: A key component of the cytoplasmic labile iron pool
    • Hider RC, Kong XL. 2011. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24, 1179-1187.
    • (2011) Biometals , vol.24 , pp. 1179-1187
    • Hider, R.C.1    Kong, X.L.2
  • 18
    • 77956081555 scopus 로고    scopus 로고
    • Iron-binding and mobilization from ferritin by polypyridyl ligands
    • Jackson CS, Kodanko JJ. 2010. Iron-binding and mobilization from ferritin by polypyridyl ligands. Metallomics 2, 407-11.
    • (2010) Metallomics , vol.2 , pp. 407-411
    • Jackson, C.S.1    Kodanko, J.J.2
  • 19
    • 0344154421 scopus 로고    scopus 로고
    • Labile iron pool: The main determinant of cellular response to oxidative stress
    • Kruszewski M. 2003. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutation Research 531, 81-92.
    • (2003) Mutation Research , vol.531 , pp. 81-92
    • Kruszewski, M.1
  • 20
    • 80255135662 scopus 로고    scopus 로고
    • Sodium nitroprussidemediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants
    • plq002
    • Kumar P, Tewari RK, Sharma PN. 2010. Sodium nitroprussidemediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants 2010, plq002.
    • (2010) AoB Plants , vol.2010
    • Kumar, P.1    Tewari, R.K.2    Sharma, P.N.3
  • 21
    • 54549105176 scopus 로고    scopus 로고
    • L-Ascorbate biosynthesis in higher plants: The role of VTC2
    • Linster CL, Clarke SG. 2008. l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends in Plant Science 13, 567-73.
    • (2008) Trends in Plant Science , vol.13 , pp. 567-573
    • Linster, C.L.1    Clarke, S.G.2
  • 22
    • 48949104251 scopus 로고    scopus 로고
    • The integration of glutathione homeostasis and redox signaling
    • Meyer AJ. 2008. The integration of glutathione homeostasis and redox signaling. Journal of Plant Physiology 165, 1390-403.
    • (2008) Journal of Plant Physiology , vol.165 , pp. 1390-1403
    • Meyer, A.J.1
  • 23
    • 29944447039 scopus 로고    scopus 로고
    • Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression
    • Mullineaux PM, Rausch T. 2005. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynthesis Research 86, 459-74.
    • (2005) Photosynthesis Research , vol.86 , pp. 459-474
    • Mullineaux, P.M.1    Rausch, T.2
  • 25
    • 84864451609 scopus 로고    scopus 로고
    • Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii
    • Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS. 2012. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Cell 24, 2649-2665.
    • (2012) Plant Cell , vol.24 , pp. 2649-2665
    • Page, M.D.1    Allen, M.D.2    Kropat, J.3    Urzica, E.I.4    Karpowicz, S.J.5    Hsieh, S.I.6    Loo, J.A.7    Merchant, S.S.8
  • 29
    • 42949085825 scopus 로고    scopus 로고
    • The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation
    • Rouhier N, Lemaire SD, Jacquot JP. 2008. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annual Review of Plant Biology 59, 143-66.
    • (2008) Annual Review of Plant Biology , vol.59 , pp. 143-166
    • Rouhier, N.1    Lemaire, S.D.2    Jacquot, J.P.3
  • 30
    • 34250633648 scopus 로고    scopus 로고
    • Functional, structural, and spectroscopic characterization of a glutathioneligated [2Fe-2S] cluster in poplar glutaredoxin C1
    • Rouhier N, Unno H, Bandyopadhyay S, et al. 2007. Functional, structural, and spectroscopic characterization of a glutathioneligated [2Fe-2S] cluster in poplar glutaredoxin C1. Proceedings of the National Academy of Sciences, USA 104, 7379-7384.
    • (2007) Proceedings of the National Academy of Sciences, USA , vol.104 , pp. 7379-7384
    • Rouhier, N.1    Unno, H.2    Bandyopadhyay, S.3
  • 31
    • 33847670407 scopus 로고
    • Ferrozine-a new spectrophotometric reagent for iron
    • Stookey LL. 1970. Ferrozine-a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779-781.
    • (1970) Analytical Chemistry , vol.42 , pp. 779-781
    • Stookey, L.L.1
  • 32
    • 34047142294 scopus 로고    scopus 로고
    • Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays)
    • Sun B, Jing Y, Chen K, Song L, Chen F, Zhang L. 2007. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of Plant Physiology 164, 536-543.
    • (2007) Journal of Plant Physiology , vol.164 , pp. 536-543
    • Sun, B.1    Jing, Y.2    Chen, K.3    Song, L.4    Chen, F.5    Zhang, L.6
  • 33
    • 26444485613 scopus 로고    scopus 로고
    • Signs of oxidative stress in the chlorotic leaves of iron starved plants
    • Tewari RK, Kumar P, Sharma PN. 2005. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Science 169, 1037-1045.
    • (2005) Plant Science , vol.169 , pp. 1037-1045
    • Tewari, R.K.1    Kumar, P.2    Sharma, P.N.3
  • 34
    • 0035201585 scopus 로고    scopus 로고
    • Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis
    • Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ. 2001. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiology 127, 1030-1043.
    • (2001) Plant Physiology , vol.127 , pp. 1030-1043
    • Thimm, O.1    Essigmann, B.2    Kloska, S.3    Altmann, T.4    Buckhout, T.J.5
  • 36
    • 17644432094 scopus 로고    scopus 로고
    • The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathionedependent pathway involved in initiation and maintenance of cell division during postembryonic root development
    • Vernoux T, Wilson RC, Seeley KA, et al. 2000. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathionedependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97-110.
    • (2000) Plant Cell , vol.12 , pp. 97-110
    • Vernoux, T.1    Wilson, R.C.2    Seeley, K.A.3
  • 37
    • 1542381019 scopus 로고    scopus 로고
    • Dynamics of metabolic responses to iron deficiency in sugar beet roots
    • Zaharieva T, Gogorcena Y, Abadia J. 2004. Dynamics of metabolic responses to iron deficiency in sugar beet roots. Plant Science 166, 1045-1050.
    • (2004) Plant Science , vol.166 , pp. 1045-1050
    • Zaharieva, T.1    Gogorcena, Y.2    Abadia, J.3
  • 38
    • 0032962391 scopus 로고    scopus 로고
    • Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots
    • Zaharieva T, Yamashita K, Matsumoto H. 1999. Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant and Cell Physiology 40, 273-280.
    • (1999) Plant and Cell Physiology , vol.40 , pp. 273-280
    • Zaharieva, T.1    Yamashita, K.2    Matsumoto, H.3
  • 39
    • 0038461907 scopus 로고    scopus 로고
    • Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots
    • Zaharieva TB, Abadía J. 2003. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma 221, 269-275.
    • (2003) Protoplasma , vol.221 , pp. 269-275
    • Zaharieva, T.B.1    Abadía, J.2
  • 40
    • 79956227541 scopus 로고    scopus 로고
    • Subcellular distribution of ascorbate in plants
    • Zechmann B. 2011. Subcellular distribution of ascorbate in plants. Plant Signaling & Behavior 6, 360-363.
    • (2011) Plant Signaling & Behavior , vol.6 , pp. 360-363
    • Zechmann, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.